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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. I am extremely happy that by gaining ‘A"’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,
courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof.K.GangadharaRao

M.Tech.,Ph.D.,
Vice-Chancellor I/c

AcharyaNagarjunaUniversity
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Numerical Sequences and Series: Convergent sequences, Subsequence’s, Cauchy
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CODE: 102MA24
M.S¢c DEGREE EXAMINATION
First Semester
Mathematics::Paper II - ANALYSIS-1

MODEL QUESTION PAPER

Time : Three hours Maximum : 70 marks

Answer ONE question from each Unit. (5x14=70)
UNIT-I

1. Prove the following:
@ Ifp >0, then lim — = 0.

n—-oo

(ii) Ifp > 0, then 711_{210\/5 =1.
@ii) lim Vn = 1.
n—oo

. . . n®
(iv) If p > 0 and « is real, then 711_1;{)10 T 0
(v) If|x| <1, then limx™ = 0.

n—-oo
(OR)

2. A) Prove that Y., By r—
B) State and Prove Merten’s Theorem.

converges if p > 1, and diverges if p <1

UNIT - 11

3. A) A mapping f of a metric space (X, d;) into a metric space (Y, d,) is continuous

on X if and only if. f~1(V) is openin X forevery opensetV in Y.

B) Suppose f is a continuous mapping of a compact metric space X into a metric space
Y. Then f(X) is compact.

(OR)

4. Let E be a non-compact set in R. Then
a) There exists a continuous function on £ which is not bounded.

b) There exists a continuous and bounded function on E which has no maximum. If, in
addition, E is bounded, then
¢) There exists a continuous function on E which is not uniformly continuous.

UNIT - 111

x? sin%,if (x #0)
0 if x=0
Then prove that f is continuous and differentiable at x = 0. Is f’ continuous at

5. A) Define f(x) = {



x=0.
B) Let f be a real value function defined on [a, b]. If f has a local maximum at a point
X € (a,b) and if f'(x) exists, then f'(x) = 0.

(OR)

6. A)If f and g are continuous real functions on [a, b] which are differentiable in
(a, b), then there is a point x € (a, b) at which

[f () — f(@)]g'(x) = [g(b) — g(a)]f" ().

B) State and Prove L — Hospital’s rule theorem.

UNIT -1V

7. A) Suppose that f is a continuous mapping of [a,b] into R* and f is
differentiable in (a, b). Then there exists x € (a, b) such that
f® - @< G-I @I
B) Suppose f is defined in a neighbourhood of x, and suppose f (x) exists.

f(x+h)+f(x—h)=2f(x) "
= =f'@).

Show that lim,,_,,
(OR)
8. A) f € R(a) on [a,b] if and only if for every € > 0 there exists a partition P of
[a, b] suchthat U(P, f,a) — L(P, f,a) < &.
B) Suppose f € R(a) on[a,b], m < f(x) < M for all x € [a, b], ¢ is continuous on
[m, M] and h(x) = @(f (x))on [a, b]. Then h € R(a) on [a, b].
UNIT-V

9. Assume « increases monotonically on [a b] and @’ € R on [ab]. Let f be a bounded
real function defined on [a b]. Then f € R(«) on [a, b] ifand only if fa' € R on [a b].

Also f(ffda = f;f(x) a'(x)dx.
(OR)

10. A) State and Prove Fundamental Theorem of Calculus.
B) Suppose F and G are differentiable functions on [a, b] F' = f € R and
G' =g € R then [ F(x)g(x) dx = F(b)G(b) — F(a)G(a) — [, f(x)G(x)dx.

Tdhdnk
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LESSON-1

NUMERICAL SEQUENCES

OBJECTIVES:

The objective of the lesson is to help the learners to understand

<> To understand the concept of numerical sequences and their properties.
<> To apply various types of sequences in mathematical and real world contexts.
STRUCTURE:

1.1 SEQUENCES

1.2 UPPER AND LOWER LIMITS

1.3 SOME MORE EXAMPLES WITH SOLUTIONS:
1.4 SUMMARY

1.5 TECHNICAL TERMS

1.6 SELF ASSESSMENT QUESTIONS

1.7 SUGGESTED READINGS

1.1 SEQUENCES:

A sequence in R is a function from N(the set of positive integers) into B. If s is a sequence,
then the image = () of n € N is usually denoted by =,,. It is customary to denote the sequence
s by the symbol {s,.}. The image 5,, of n is called the n** term of sequence.

If s and t are two sequences in R, then t is said to be a sub-sequence of s if there exists a
mapping ¢: N — N such that (i) t = s @(ii) for each n € N, there exists m € N such that
@(i) = n for every i = m in N. In other words, if {s,} is a sequence in R and {i,} is a
sequence in N such that i, << i, < - << i_ < -+ then {an} is called a subsequence of {s,,}.

For example, if s = {i] is a sequence in R, then t = {L} is a subsequence of s.

Zn—1

1.1.1 Definition: A function f defined on the set of all positive integers or the set of all
non-negative integers is called as sequence.

1.1.2 Notation: If f(n) = x, for any positive integer n, we denote the sequence f by

£x:'z}ua]. or £x1’x2’ R TR }

1.1.3 Definition: Let (X,d) be a metric space. A sequence {x,} in X is said to be a
convergent sequence if there is x € X such that for any = == 0, there is a positive integer N
such that d(x
lim X, =XOorx, —xasmn—co,

=

x) < £ Wn = N. Here x is called the limit of the sequence {x,}, and we write

nt

1.1.4 Definition: If the sequence {x,,} is not convergent then it is said to be divergent.

1.1.5 Theorem: Let {x,} be a sequence in metric space X.
(i) {x,J) converges to p € X if and only if every neighbourhood g contains all but finitely
many terms of {x,}
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(ii) If p EX andp' € X and if {x,} converges to p and {x,} p' then p =p".
(iii) If {x,,} converges, then {x,,} is bounded
(iv) If E containing X (E < X) and if p is limit point of E, then there is a sequence {x,} in E

such that p = lim,, _,, x,.
Proof: (ii) Given £ = 0, choose “+ve” integer N,, and N, such that ;
dix

E
n,xj < -, n=N;

d(x;,x) < ;, n =N, For n = ma=(N,N,),
. . e &
0<dixx")<d(x,x")+d(x,x) < E-|— J=¢€

Lete 0, d(x,x')=0=x=x'

(iii) Choose a “+ve” integer N 3 n > Nd(x,,x) <1

nt

If M = max{1,d(x,,x), .. d(xy, )}
Then d(x,,x) = M ¥ n = {x,}is bounded

. . . 1
(iv) Given e == @, choose “+ve” integer N 3 i and

n'

choose x, E E 3 d(x,,x) ::ii .Forn =N, d(x,x) < ?i < Ele, x, = x.
1.1.6 Theorem: Suppose {s, }.{t,} are complex sequences, and the

lim, .5, =slim, __t, =t Then

(i) Thenlim, . (s, +t,)=s+t

(i1) lim, . cs, = cs, lim, (¢ + t,,) = ¢ + s for any complex number c;
(ii1) lim,, ...(s,.t,) = st

(iv) lim si = :T’ provided 5, # 0 (n=1,2,.....) and s # 0.
m

T —oa

1.1.7 Definition: Let {£ } be a sequence in X. Let {n, ] be a sequence of positive integers
such that m; < n, < -+ ... Then {F;!l_} is called a subsequence of {P,}.

If {B, } converges, then the limit of this sequence is called as a sub sequential limit of {£,}.

1.1.8 Note: {P,} converges to P iff every sub sequence of {E } converges to P.

1.1.9 Theorem:
(i) If {B ]} is a sequence in a compact metric space in X then some sub sequence of {P,}

converges to a point of X.
(ii) Every bounded sequence in R* contains a convergent subsequence.

1.1.10 Theorem: The sub sequential limits of a sequence {P,} in a metric space X forms a
closed subset of X.
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1.1.11 Definition: A sequence {x,}in a metric space (X, d) is said to be Cauchy sequence
if for every for every =0, there is a positive integer N such that d(x,,x,) <&

¥Ymmn=N.

m*

1.1.12 Definition: Let E be a subset of a metric space (X, d). Then the supremum of the set
{d(x,¥)|x,v € E}is called the diameter of E, and is denoted by 'diam E".

1.1.13 Theorem:
(i) In any metric space X, every convergent sequence is a Cauchy sequence.

(ii) If X is a compact metric space and if {B, } is a Cauchy sequence in X, then {£,} converges
to same point of X.
(iii) In B¥, every Cauchy sequence is convergent.

1.1.14 Definition: A metric space X is said to be a complete metric space if every Cauchy
sequence in X is convergent.

1.1.15 Example:
1. The metric space R¥ is a complete metric space.

2. Every compact metric space is complete.

1.1.16 Definition: A sequence {s, } of real numbers is said to be
(1) Monotonically increasing if s, < 5,,, forn =1,2,3,... ...
(i) Monotonically increasing if 5,, = 5,,., forn =1,2,3,... ...

n —

1.1.17 Definition: A sequence {s,} of real numbers is said to be a monotonic sequence if
either {s,,} is monotonically increasing (or) monotonically decreasing.

1.1.18 Note: Suppose {s,,} is a monotonic sequence. Then {s,,} converges if and only if it is
bounded.

1.2 UPPER AND LOWER LIMITS:

1.2.1 Definition: Let {s,,} be a sequence of real numbers.

(i) If for every real M there is an integer N such that s, = M ¥n = N, then we write
5, 00asm — 1

(i1) If for every real M there is an integer N such that 5, < M ¥ n = N, then we write

5, —* —00asmn — oo

1.2.2 Definition: Let {5, } be a sequence of real numbers. Let E be the set of all numbers "x'

in the extended real number system such that s, — x for some sub sequence {S"?{} of {s, -
ie., E = {x € R”| 3 a subsequence {S?‘k} of{s,} 3 5, —x }

Then E contains all sub sequential limits of {s,,} plus possibly the numbers " 4 co”," — oo,
Define s* = supE and s, = inf E.
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The numbers s* and s, are called upper limit and lower of the sequence {s,,}, respectively and
we write lim sup 5, = 5 and lim

S sup s, = s,.

=g

1.2.3 Theorem: Let {s,,} be a sequence of real numbers. Let

E = {x € R*| 3 a subsequence {s,!k} of{s,} 3 5, —x 1. and s* = sup E. Then s* has the
following two properties:

(i) s"€E

(ii) If x = s7, then there is an integer N such that s, < x ¥ n = N.

Moreover, s* is the only number with the properties (i) and (ii).

1.2.4 Theorem: Let {s, ]} be a sequence of real numbers. Let

E = {x € R”| 3 a subsequence {S?!;{} of{s,} 3 5, —x }. and s, = InfE. Then s* has the
following two properties:

(i) s,€EE

(ii) If x < s, then there is an integer N such that s, > x Vn= N.

Moreover, s, is the only number with the properties (i) and (i1).

1.2.5 Remark: Let {s,,} and {t,,} be two sequences of real numbers.
(1) Iffor fixed integer N, s, < t,, ¥ n = N, then

n—
(i) lim,_ infs, <lim inf t,
(i) lim sup s, =< lim, __ supt,

(2) Iffor fixed integer N, 0 < 5, <t,¥n> Nandift, = 0. then 5, = 0.

n—+og

T —oa

1.2.6 Theorem:
(i) Ifp = 0,then lm = =0

n—oa NF
(ii) If p = 0, then ?}i_:i vp—1
(iii) lim Yn=1
mn—og
a
(iv) If p = 0 and a is real, then lim —— = 0

n—oo (1+p]
(v) If |x| = 1, then lim x™ = 0.
Proof:
(i) Suppose that p = 0 is a real number. Choose € = 0

.. . 1
Take a Positive integer N such that €
. 1 1 1
For any integer nEN,—“‘f:v—,,{e:‘-—“:: evn=N
ne NE ne
1

ne

=L cevn=N

ne

So

1
nF

n|=

This shows that lim iﬁ =0.

n—oa B

(ii) Suppose that p = 0
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Case(i): Suppose that p = 1

For any integer n = 1, write x,, = \/p — 1 ... ... (1)
Itisclearthat x, = 0¥ n=1
Also, 1+ x, ="1/p (by (1))

(14 x,)"=p=1+nx,<p ==z, ‘EPTTl‘v'nE 1
Let € = 0. Choose a positive integer N such that Lil <€

. -1 _p-1 p—1
Foranymtegern.EN,pTEpT{s :,-JT::: eVn=N

i

-1
Now |x, — 0= |x, | :X”EPT‘{:E Yn=N

Therefore limx, = 0. Thatis lim (3/p—1) =0

f—oo M —+oa
= lim(—-1+"p)=1
:lz—*ml: MP)

Hence lim "/p = 1.

R ores N
Case (ii): Suppose p =1
Now lim 'L.-"E =limVi=1
n—oo n—oa

Case (iii): Suppose p < lied<p=<1

1 .
= . = 1 is a real number.

—
: . nfl .1
So by case (i), we get that lim ! ||— =l=lmsw=1
n—+oa Y P n—+oo VP
. ni.
—amye=t
(iii) For any integer n = 1, write x, = {n —1........ (D)
Itisclearthatx, =0V n=1
Also from (1) %2y = Vn=n=(1+x, "= n= @xn:
R 2 | 2
= x," = =X, = Ynz=2
n—1 In —
N
Choose ¢ = 0. Take a positive integer N such that ﬁ < €”
- 5
Forany integern =N, lx, — 0l =lx, | =x, < [—< |[—<e¢

yn—1 '.JI N-1
Therefore limx, = 0.

n—oa
= lim (YVn-1)— 0= lim\/p - 1.
n—oa M —+oo
(iv) Suppose that p = 0 and @ are real numbers.
Let k be a positive integer such that k = «

For any n = 2k,
(1+p)" = “c;{Pk =

n! e nin—1.[n—(x—11
(m—k)iE! k! P

B n*p*
T2kl
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nfp* n* 2Fk!
= | .
2Kkl (1+p)*  p*

= (1+p)" = vn=2k oo (1)

Lete = 0

Now lim n®~* = lim =0

n—+oo n—o n% K
2X g
Therefore lim ('T) n® k=0
= B

-

= J a positive integer N such that |(%) n Kk — IZI| =eV¥nz=N.
ol

Take N, = max{N, 2k}

:z"“?‘:?‘k:| e

p*

n® |
(14p)"]

Forevery Vnz= N, |

N“
= |.:1+p;.-‘1 —l]| < E
a
This shows that lim ———

n—oo (1tp]

=10

(v) Suppose that x is a real number such that |x| < 1 = =1

|l

— 1 _1>0

EY
Letp = %I -1
Then p is a real number such that ¢ = 0
o
n

By (iv) ?}1_% T 0 for every real number c.

Taking & = 0, we get that lim ——=10

n—ea (11 p)T

. 1 . .
= lim —=0= lim [x[* =0 = limx" = 0.

n—ea 77 M=o Mm— oo

1.3 SOME MORE EXAMPLES WITH SOLUTIONS:

1.3.1 Example: Prove that convergence of {s,} implies convergence of {|s,|}. is the
converse true?

Solution: Let € = 0.

Since the sequence {s, } is a Cauchy sequence, there exists N such that |s,, — s, | < € for all

m > Nandn = N.
We then have |Is,,| —Is,|| < s, —s,| < eforallm > N and n > N.
Hence the sequence {|s,, |} is also a Cauchy sequence, and therefore must converge.

The converse is not true, as shown by the sequence {s, } with s, = (—1)".
1.3.2 Example: Calculate lim [\,’ n“4+n-— rt).

2 tea

Solution: Multiplying and dividing by v'n? + n + n yields
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.'T T 1
4 1T n—n= —_ = —
Vvnt+n+n f 1

'\I|1+E+1

It follows that the limit is =.

1.3.3 Example: If s, =+2 and s, = JE +.Js, (n=123..), prove that {s,}
converges, and that s, << 2 forn = 1,2,3 ...

Solution: Since V2 < 2, it is manifest that if 5, < 2, then s,,,; < V2 | 2 = 2,
Hence it follows by induction that /2 < s,, < 2 for all n.

In view of this fact, it follows that (s, — 2)(s, + 1) < 0foralln =1,

v
e, s, > "—2=35_,.

Hence the sequence is an increasing sequence that is bounded above (by 2) and so
converges.

Since the limit s satisfies s° —5 —2 =0

It follows that the limit is2.
1.3.4 Example: Find the upper and lower limits of the sequence {s,,} defined by s, = 0;

ER . 1
_ Fom-g. _1
o — o 5 Fzme1l T 3 + 50

Solution: We shall prove by induction that

; 1
—omand 55, = 1—Fform=12,..

The second of these equalities is a direct consequence of the first, and so we need only prove
the first.

Immediate computation shows that s, = 0 and 5; =

k| =

Hence assume that both formulas hold for m = r.

1 1 1 1 1
Then S:,,+: - ;S:?,+1 - ;(1 _F) - -

5 SF+L"

This completes the induction.

We thus have lim sups, = 1and lim infs, = é
1.3.5 Example: For any two real sequences {a,}.{b,} prove that

lim sup(a, +b,) = limsupa, + lim supb,, provided the sum on the right is not of the
n—oa m—+oa

mn—og

form oo — oo,
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Solution: Since the case when lim supea, = +o and lim supb, = —oo has been excluded

n—oo n—+oo

from consideration.

we note that the inequality is obvious if lim supa, = +oo.

n—o
Hence we shall assume that [a,,] is bounded above.

Let {n, } be a subsequence of the positive integers such that

iﬁ]; sup(@a,, + b, )= &1_13; sup(a, +b,)

Then choose a subsequence of the positive integers {k,,} such that lim a, = lim sup a,_
m—+oa m

k—+oa

The subsequence a,, - +b

n k."l"l

still converges to the same limit as a,, + b,

ie.,to lim sup(a, +b,).

2=

Hence, since a,, is bounded above (so that Jlim sup ay, s finite),
—+ 30

It follows that b,!km converges to the difference

lim b, = lim (a.z e +b

m—oo  Rm m—+oo

)— lim a,

Em M —oa im

Thus we have proved that there exists sub sequences {“w } and -rb ] which converge to

L T
limits a and b respectively such that @ + b = lim sup(a, + b, ).

Since a is the limit of a subsequence of {a,, } and & is the limit of a subsequence of {5,, ;

It follows that @ is the limit of a subsequence of a < lim supa, and b < limsupb,, from

n—oa n—+od

which the desired inequality follows.
Exercises

1. Write a formula for s,, for each of the following sequences:

() 1,—-1,1,—-1

(i) 2,1,43.6,587, .....

(iii) 1,3,6,10,15, ....

(iv) 2,5,5,5, .

Ans. (i) s, =1lifnisodd, s, = —lifniseven,(ii)) s,=n+1lifnisodd, s, =n—1ifnis
even.

(n+l) .
(iii) 5, = ——— ) (iv) s, = —

2 ! ntl
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2. If !l and m are real numbers such that I < m + € for every € = 0, then prove that [ =< m.
3. Use the definition of the limit of a sequence to show that the limit of a sequence {s,,}

= 2
where =, = —51s2.
4. If the sequence {s, ] converge to I, then prove that the sequence {|s,|} converges to {|I|}
[Hint: Use the inequality ||x| - |_1_,r|| < |x—vy|lx,v ER.
5. Give an example of a sequence {s,} of real numbers such that {|s,|} converges but {s, }

does not.
Ans: One such sequence is {s,,} where s, = (—1)"
6. Prove that the sequence {s,,} where s, = /n diverges to o.

7. Is the sequence {sin nr} convergent?

Ans: Yes, it converges to 0.
8. If {s,} and {t,} are non-decreasing bounded sequences, and if s, < t (n € N), prove

that lim 5, =lim ¢,.

mn
9. Show that lim i— = 0, where x is any number.

10. Show that lim ! G] = 0 or 4w, accordingas a < eora = 2.
11. If x,,y, are positive and if for n = 1, 2x,., =x, +y, and — ==+ =, Show that
m+1 *n *n

{x,} and {v,} are monotonic sequences and approach a common limit I/, where I* = x,y,
12. Ifa, =

, where a, a,, are positive, show that the sequence {a,} tends to definite

G-y

limit Z, the positive root of the equation x* + x = a.

13. If k is positive and a, — are positive and negative roots of x> — x — k = 0,prove that if
v, = k —v,_, and v; < k then limv, = §.

2Up_ sy A . .
14. If 0 < uy < u, and u, = —2=21=2 Oie,, u, is the harmonic mean of u,_, and u,_,),

tp_y lig_n

. 1
show that lim u,, = w1, /(2uy +u,).

15. If g, = (i] (s, +s,+-~+s5,)inEN), prove that TImo, <Ims, and
16. If {s,} is a Cauchy sequence of real numbers which has sub-sequence converging to I,
prove that {s, } itself converges to I.

1.4 SUMMARY:

This lesson is designed to introduce learners to the fundamental concept of numerical
sequences, exploring their properties, and applying them to real-world contexts. This lesson
provides a solid foundation for learners to develop their understanding of numerical
sequences and their applications, preparing them for more advanced mathematical concepts
and real-world problem-solving. Key Takaways of this lesson are Definitions and theorems
of numerical sequences, Upper and lower limits of sequences, Applications of sequences in
mathematics and real-world problems, and Examples and exercises to reinforce
understanding.
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1.5 TECHNICAL TERMS:

R/
0.0

Cauchy Sequence
Compact Metric Space
Complex Sequences
Convergent

Diameter

Divergent

Limit of the Sequence
Metric space
Monotonically Decreasing
Monotonically Increasing

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

+ Neighbourhood

¢ Sequence

+ Subsequence

¢ Supremum

« Upper limit and lower limit

1.6 SELF ASSESSMENT QUESTIONS

1. Calculate lim [:\."n: +n— :-1).

mn—og

— Fzm-1.

2. Find the upper and lower limits of the sequence {s,,} defined by s, = 0; 5, = =2I=L

Som+1 ™ %"‘ Sam-

3. If I and m are real numbers such that [ < m + € for every € = 0, then prove that [ < m.

4. If the sequence {s, ] converge to I, then prove that the sequence {]s,, |} converges to {||}
[Hint: Use the inequality ||¥| — |v|| < |x — vl x,¥ € K.

5. s the sequence {sin nm} convergent?

Ans: Yes, it converges to 0.
6. Give an example of a sequence {s,} of real numbers such that {|s,|} converges but {s, }

does not.
Ans: One such sequence is {s,, ] where 5, = (—1)".

7. 1If {s,} and {t,} are non-decreasing bounded sequences, and if s, < t (n € N), prove
that lim =, < lim ¢ .

1.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition, 1985.

Dr.U. Bindu Madhavi



LESSON-2

NUMERICAL SERIES

OBJECTIVES:

The objective of the lesson is to help the learners to understand

% To understand the concept of numerical series including convergence and
divergences.
% To apply series properties for solving mathematical Problems.

STRUCTURE:

2.1 SERIES

2.2 SOME MORE EXAMPLES WITH SOLUTIONS:
2.3 SUMMARY

2.4 TECHNICAL TERMS

2.5 SELF ASSESSMENT QUESTIONS

2.6 SUGGESTED READINGS

2.1 SERIES:

2.1.

An expression of the form u; + 5 + uy + -+ + u, + *+, in which every term is followed

by another according to some definite law is called a series. If the series contains a finite
number of terms, it is called a finite series; in case the number of terms is unlimited, it is
called an infinite series. The above series is symbolically denoted as X, t,,.

IfR, =u,.y +u,,, + - then R, is called remainder after n terms of the series.

Dependence of series on sequences: If §,, = w, + 1, + 1z + -+ + u,, then 5, is called the

n!

sum to n terms or the n®™® partial sum of the series Xo_, u,,.
Thus we can express the series Lu, as a sequence of the partial sums [S,]. In other
words, the behaviour of the series ¥ u,, is the same as the behaviour of the sequence 5,

5,5, ..

1 Definition : Given a sequence {x, }, we define
5, — Zu, — uy + u,+ ug +-+ a, If {5, converges, say to 5, we write;
ra, =5 =lim,_ . ¥i-, a, and call Za,, an infinite series. We say Xa,, diverges if
it doesn’t converges.

2.1.2 Theorem: }.a, converges if and only if given € = 0, 3 a positive integer

Nanzm=N=|¥a,|<e k=12 ...,n
Proof: Notice 5, — 5,, = Ya, and apply Cauchy criterion to S .

2.1.3 Theorem: If ¥a, <co,a, =0
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Proof: Lets = ¥a, -5, —+55,., =+ s
So L Su+1 - Su — 0.

2.14 Remark: (1) If &, —+ 0, ¥a, need not converges consider X ?—lzi — 0. If

5, =1+ %+ +§ , and {5} converges, 3 positive integer |5, — Syl < f

But Son = 30 = (ﬁ) * (:\-‘L:) Tt ('«Ij = (wiw) - EI
So Xa, doesn’t converge.
2.1.5 Theorem: Let }a, = 0. Then ¥ a, converges if and only if 5, is bounded above.
Proof: S, —5,, , =a, = 0sothat {§, }is T and {5} converges
< {S,] is bounded above.
2.1.6 Theorem: If |a | < ¢, for n = N, and if X, converges, then Ya, converges.

Ifa, =d, =0forn = N, and if 3d,, diverges, then }a, diverges.

n - n -

Proof: Given € = 0, 3a positive integer N¥x =m = NI, < ¢
So [¥a,l =¥la, |l <3¢, <€

So that (1) follows.

If 2 a, converges, ».d, converges by (1).

2.1.7 Theorem: If 0 < x =< 1, ¥ X* = L Ifrz= 1, XX* diverges.

(1-x)
Proof: forx + 1,5, — ¥  — 1 +x + x> 4+ - 4+ x¥
(4 oA+l .
=I'l,x :I—>,l - Since x* — 0 for |x] =< 1
(1—a) (1-a)

Ifx>=1,5,=n— o-So X¥* diverges forx = 1
We call £X*(0 = x < 1), the Geometric series.
2.1.8 Theorem: (CAUCHY CONDENSATION TEST)
Leta, = a, = -~ = a, = 0. Then Xa, Converges, if and only if ¥2¥a,, converges.
Proof: Let 5, = Xa, and t, = ¥2/a,, forn <k,
S.=a,+(a+az) 4+ (az ++axy,,)

=a, +2a,+ -+ 2%a,, =t, (use a, 1)
L€y 5, > £, S, = B oo (1)
Forn =k,

S,z a,+a,+(a;+ay)+ -+ (a,_, ++ay)
=2(a, +a,+2a,++21a,)
=25, = a,;+ 2a, + 4a, + -+ 2¥a,,

= tk

1€, 25, =t tivieeieeee, )

From (1) & (2); So {S,,] is bounded = {t,} is bounded.

The Theorem follows.

2.1.9 Theorem : ¥, uiF converges if and only if p = 1.
Proof: If p = 1, u;F = i and ¥, i diverges.

So ¥, ui“ diverges forp < 1
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Ifp =1, Z 5 1s 1 andE— converges if ¥2k (“{F)

T 2¥14-P) converges.
Now 2! P <1e=1—-p<0
=p =1
2.1.10 Theorem : I ,——

n=2

5 converges if p = 1, and diverges if p < 1..

“n(log,n

Proof: Clearly, sequence {log, n} is monotonically increasing sequence of positive
terms for n = 2.

The sequence {n log n} is monotonically increasing sequence of positive terms.

The sequence { } is monotonically decreasing sequence of positive terms.

nlogn

So by known theorem, we have that 2> converges if and only if

n=2 nilogyn)F
o k

E—1 m converges.

1
(==}
e X, o TogoE converges.

1

(==}
—,—— converges

(:}Zk_l %P (logz)? g

mzk 17 “converges ......... )

1
Therefore ¥, ——— - converges < -

n=cn(lng,n]

— E converges
k=1.p
(lng? )V

By the above theorem (1.3.9) the series Zf:iﬁ converges if p = 1.

—}Zk 177 converges when p = 1.
(log

So by (1) the series ¥, converges if p = 1

= T =m
== nilog,n)F

Again by the same theorem the series Eleé diverges if p = 1.

1 .. .
k=1yp <
.;;ﬂg:}:zkzlkp divergesif p = 1

So by (1) the series X, diverges if p = 1.

_.!1—
n= :lzllngE.:'z}

2.1.11 Note: The series Lo— =07 converges

. : 1
Proof: For each integer n = 1, write 5,, = ;::“'E

Now forn = 1,5, =1+ 1_%+£.+"'+%

1
e1+1+++++ <3

an-= 1
=5,<3Vn

Therefore the sequence {s,, } of partial sums is bounded and also monotonically
increasing sequence.
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Hence by known theorem {s,, } is convergent.

So by definition, the series 2= =07, converges
2.1.12 Theorem: lim,, _,_, (l +%

1

Proof: 5, =Z%and t, = (1+E)

Notice lim 5, exists. 5,,is T and;
a—Hod

1 1 1

5.=1+ 1+—!—|——!-I-"'+—!

e1+1+ + b <3

an-= 1
By the B1nom1a1 Theorem.

t —1+1+1'(1 L)+1(1 1)(1 2)+
n 2 n/ 3 n n
1 1 2 (rn—1)
(-2 (1-2). (-
n n n n
Again forn = N, t,, is and so;

\ El+1+i!(1__)+ +—'(1—I—t)...(1—(”;-))

Fix N, and let n — oo

Sollmtnzl—1+_|_|_ -|-—'—.E-
Let limt, = E— ....................... )
oo

By (1) & (2), lim t, = e and the theorem follows.
2.1.13 Definition: we define e = fo‘z,:%
2.1.14 Theorem : ¢ is irrational

. . 1
Proof: If 5, is the n™ partial sum of — then;

1 1 1
0=e—5, (n+1)! + (n+2)! + (n+3)! +
1 L 1 1
e | = Zgal
<ottt = (1)

If & were rational, say e =2, p =g EN
q
Then 0 < e —S_ < iq! By (1)
1
#ﬂ{q![e—.ﬁq){gi 1

Now gle and q! 5 are integers so that g! [e -5 r_) is an integer between 0 & 1. This
is impossible, so e must be irrational.
2.1.15 Theorem: [Root test] state and prove Root test (or)
Given Z™_, a_ ; put @ = lim, ___ sup|a, |7 . Then
(1) If &« < 1, Xa, converges;
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(i) Ife =1, Xa, diverges;

(iii))  If & = 1 the test gives no information.

Proof: Let & = lim,, _,_, sup L-"'|a_”|

(i) Suppose & < 1

Let £ be areal number suchthat @ < 8§ < 1

Since 0 < § < 1, [by theorem 1.3.8], we know that the series 2.;-, f" is convergent
also since f§ = a

=lim, . sup ':fla_ul there exists a “+ve” integer N such that Ula_nl < f,¥nz=N.
= la,| <f*,¥n=N

Since 27—, f" is convergent, by composition test

Lo, a, is convergent

(i)a=1

Since @ = lim,, _,_, sup \/la, | > 1

Y
We know that there is a sequence {n,, } of “+ve” integers such that ;|| |ﬂ':-z;;| —a>1

As a > 1 there are infinitely many “+ve” integer n, 3 |a, | =1

= there are infinitely many “+ve” integer 1 3 |a,| = 1......... (1)

Now we have to prove that
Do, a, is diverges
on the contrary suppose that

To :
Lin=1 @, 1S converges

= lima, = 0.

So, for e = 1, Ja positive integer N 3 |a,| =la, —0| =1¥nz= N
which is contradiction to (1)

Therefore, 2= a,, is diverges.

(ii1) Consider the series

1 1
E:u:l; and Z::=1“_:

— —

. nf|L . nf|L 1

Now & =limsup [|=|=lim,... ||| sup ==
y I 4 In '

]
1 1

1 n—_
lim Yn 1

mn—og

: w 1. .
But we know that the series 2=, s divergent

|1
Also & =lim,, __ sup H|' |;| (by theorem 1.3.9)

. "1
= lim sup 1=
—oo 1=

n '\J

. 1 . 1

= lim sup| | =lm |+
n—+00 —_ L —*+00 —
nn 7
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But - 1 = — is convergent [by theorem 1.3.9]

So if @ = 1, the test gives no information.

2.1.16 Theorem: (The Ratio Test) Let @, + 0 then Fa,
(1) Converges if lim sup HMH = 1and
(2) Diverges if lim H +”|J

Proof: The given series is X, a

"1::1

L

(1) Suppose that lim

T —+oa

Then there exists a real number £ such that lim

T —oa

vy - L+l
= Ja“+ve” integer N 3 |"'—
On

=la, +1|l =B la,l,vn=N
For any “+ve” integer p,
lay + 1] < 8 layl
lay + 2] < Blay +11 < BB layl = B? layl
lay +pl < B7 layl
Forany n = N, |a,| = lays,_yl < BV layl
= 3" |yl
AsO=< f =1,
We know that
=1 B™ converges
= BV a,| XF., B™ converges
= ¥ layl 87V B™ converges
Since forn = N, |a, | < |a, |8~ 8"
By comparison test the series
w=y 0, converges

(0))

——| = for n > n,, where 1, is some fixed “+ve” integer
Bn

Then |a, + 1| < |a,| forall n =n,

we have to prove that series X5=, a,, diverges

on contrary way suppose that Zuzl a,, is converges
by a know theorem lim a, =0

n—oa

therefore e = |a,, | = 0 3 there is a “+ve” integer
N,3la,| <e= |aun| Yn=N,

Taken N = max{n, N;} +1

Then |ay| < |ann| ...................... (D)

Since N = ny, |ay,| = |ann +N - nD| = |c1

which is a contradiction to (1)

:lzn|
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Therefore, 2, a,, diverges.

2.1.17 Theorem: For any sequence {c,} of positive numbers,

() lim, ... inf 22 <lim, . inf%/c, and
n
(ii) lim,, . sup":*."'c_u < lim,, ,_, sup—=

fn

Proof: Let {c,, } be a sequence of positive real numbers

(i) Leta =lim, _, inf 2=

—*0C
n ey

If @ = —uo there is nothing to prove
Suppose a # —tgi.e, —0 < @

Choose a number f such that —co < § < a

C

So 3 a positive integer N 3 ::‘ =BVn=N

= Cn+1 = J{?cu Vnz=N

In particular for any number p = 0, ¢, = Sy,

Cy+2 = Beysy = fPcy and so on we get oy, = BPecy

So for any integer n = N, ¢, = €, _yan = Cyrimony = By
=¢c, =p"8 Ny V=N

e = VB cyf ¥Yn=N

= lim inf /¢, > § lim nf VB Ve, =B(1)

mn—oa
. . . . e
Since § < a is arbitrary, we have that lim, _,_, in7 |/c, = @
. T O . . Cnvs
lim, ., inf /¢, =lim, . inf .

(i) Leta =lim, __ sup-2

Cr

If @ = +wo there is nothing to prove
Suppose « is a finite real number

Choose a number 5 such that @ < 8

C

So 3 a positive integer N 3 ::‘ =BVn=N

= Cpyy = fc, Yn=N

In particular for any number p = 0, ey5, = Bey

Cy+1 = Beysr = fPcyand so on we get oy, < BPey

So for any integer n = N, ¢, — ¢_ysy — Cysinon) = Bty

=c, <f"B Ve, YR=N
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e, < B Neyf Yn=N

W “n
?11_12 sup '/ e, < B 11n1 sup 'y ,G =[B(1;
Since £ = a is arbitrary, we have that lim, _,_, sup .'c” S
:lz+J.
,}1_111 sup ,* €, = 1]1]';1: sup——

2.2 SOME MORE EXAMPLES WITH SOLUTIONS

2.2.1 Example: Investigate the behaviour (convergence or divergence) of }a,, if

a) a, =vyn+1—n
wnTl—n .
b) a‘rz = >
n
— n
¢) a, = (”-‘n— 1)
d) a, = =Iia for complex values of z.

Solution:

(a) Multiplying and dividing a,, by vn +1 + 7,

we find that e, = __* _, which is larger than —
n VnFl+/n 1+1

The series ¥.a,, therefore diverges by comparison with the p series (_u = é)

Alternatively, since the sum telescopes, the nth partial sumis yn +1— 1,

Which obviously tends to infinity.
(b) Using the same trick as in part (a),

We find that =, = % which is less than ——.
n n|ynFl+yn) n

. . . . 3
Hence the series converges by comparison with the p series (p — ;)

(c) Using the root test, we find that a”i = \/n — 1, which tends to zero as n — oa.

Hence the series converges.

(Alternatively, since by part (¢ ) of Known Theorem 37 tends to 1 as n — co, we have
a, = 27" for all large n, and the series converges by comparison with a geometric
series.)

(d) If |z| < 1, then la,,| =3, so that @, does not tend to zero.

Hl
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2.2.2

2.23

Hence the series diverges.

If |z| = 1, the series converges by comparison with a geometric series with r = <

=

Example: Prove that the convergence of }a, implies the convergence of 2 "':"‘, if

a?! Eﬂ

. . — 1%
Solution: Since (,ﬂ.' a,—= =0,
T

It follows that *

Now X a,,~ converges by comparison with ¥a, (since Xa, converges, we have

@, =< 1 for large n, and hence a,” < a,.

. 1 .
Since X u—zalso converges (@ series. p = 2),

It follows that ¥ ™ converges.
n

Example: If Za, converges, and if {b,} is monotonic and bounded, prove that
Xa,b, converges.

Solution: We shall show that the partial sums of the series form a Cauchy sequence,
i.e., given € == 0 there exists N such that [X} =, ., a,b.| < eif n >m = N,
To do this, let 5, = Li=, a, (5, =0},
sothata, =S, —§,_,fork =12, .
Let M be an upper bound for both |b, | and |5,
AndletS = Ya,and b =lim b, .

Choose N so large that the following three inequalities hold for all m = N and
n=N;

b5, — bS] < 25 by Sy = bSI < 25 1by — byl < .

n-n ™m ?J"I

Then if n = m > N, we have, from the formula for summation by parts,

:=r:l1 Iia’r:brz = b 5 D 5 +E: rJ:l-1 bkli)sk

n n m m

Our assumptions yield immediately that |b, 5, —b,,5,,| < %, and

nTmn

” l (b k+1)5k| gf’fz;{z;}nlbk—bk+ll‘
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Since the sequence {b,, } is monotonic, we have
E;:;E;1|bk = byyal = |E:;3;1(bk = b ) =1b,—b,| < %,
From which the desired inequality follows.

2.3 SUMMARY:

This lesson focuses on helping learners comprehend numerical series, including
convergence and divergence, and apply series properties to solve mathematical
problems. Highlights of this lesson are Definitions and theorems of numerical series,
Convergence and divergence of series, Series properties and applications and Examples
with solutions and exercises.

2.4 TECHNICAL TERMS:

¢ Binomial

+» Bounded above
% Convergence

% Divergence

+» Geometric Series
¢ Infinite Series
¢ TIrrational

/7

«* Monotonic

2.5 SELF ASSESSMENT QUESTIONS:

1. Investigate the behaviour (convergence or divergence) of Xa,, if
a)a, = Vn+1-— Vn
b) a, = (Yn—1)"
2. If Ta, converges, and if {b,} is monotonic and bounded, prove that Ya,b,

converges.
3. L[V D -V

s [V@FD-7

2.6 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition, 1985.

Dr. U. Bindu Madhavi



LESSON-3

POWER SERIES AND MULTIPLICATION OF
SERIES

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To understand the concept of Power series and Multiplication of series including
convergence and divergences.

s To apply Power series and Multiplication of series properties for solving
mathematical Problems.

STRUCTURS:

3.1 POWER SERIES

3.2 MULTIPLICATION OF SERIES

3.3 SOME MORE EXAMPLES WITH SOLUTIONS
3.4 SUMMARY

3.5 TECHNICAL TERMS

3.6 SELF ASSESSMENT QUESTIONS

3.7 SUGGESTED READINGS

3.1 POWER SERIES:

3.1.1 Theorem: Given ‘power series’ Xa,z"(a, € @)
1

Let @ = lim supla, [ and R = -

Here R = {0 if @ = oo and o0 if @ = 0}
Then Ya,z" converges for |z| < R, and diverges for |z| = R.
Proof: Applying the root test to a,z"

lim Ia;!z”li = |z| limlanli
= |zl/R
3.1.2 Note: We call R, the radius of convergence of Xa,z". For |z| = R, we can’t say
anything define.

oa n_.n

3.1.3 Example: Consider the series X.—; n"z". Find the radius of convergence of the

series.
Solution: Here ¢, = n" ¥n = 1

1 n 1 n 1
Now a = lim,, _,__ supy/|c,| = lim supy/ [n®| = lim

T —*00

n—oo SHPT = oo
= a =0
. . 11
Therefore the radius of convergence of the series R = —=— = (.
L -
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mn
3.1.4 Example: Consider the series Zf:ui_.-

1 1
ion: c,==—Vn=lc, . =——
Solution: Here ¢, — 2L T o
. () 1
Now |2ze2| = {22 ‘=| |
— (n+l
wl | () nt)
. C 1 .
a = lim,, . |2 = 1n1|_ —| =0
Cn n—oma |[m+L])
=a =0

. . 1
Therefore the radius of convergence of the series B — — — too,

mn
3.1.5 Example: Consider the series Zf:li_:'

Solution: Here ¢,, = i Yn=1

. o e S = |1 1
Now a = lim,, . \/lz,| = lim, _, . |'|— = lim==1
y In n—oo VB
=a=1
: . 11
Therefore the radius of convergence of the series R = —= 7= 1.

3.1.6 Theorem: [Abel’s Partial summation formula]
Given sequence {a,} and {b,}, Let 4, = Y a,(4_, =0). Then for 0 < p < gq,
FYa,b,=34,(b, b,sq) Ap_lbp I Aq.bq
Proof: Ya,b, = (A, —A4,_,)b,
=2A,b, — XA, b,
=YA b, —YA b, .,
=%A,(b, —b,+y) —ZA, b, + A b, .

3.1.7 Theorem: (Dirichlet).
Let (1) the partial sums 4,, of ¥a, be bounded.

2)b, L0

Then Za, b, converges.
Proof: Let |4,,| = M[] n. Given € = U, choose by, 3 by < e/2M.For W <p < g,
TA.b, = |Z(4, (b, — b)) — A, b, +4_b, )|

< M|L((b, —bues) + b, +b,))|

< 2Mb,

< 2Mb,,

< E
[Notice b, — b, ., = 0]
By Cauchy Criterion, Y a,b, converges.

3.1.8 Corollary: (Leibnitz Test)
Ifc, L 0, ¥(—1)""1C, converges.
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Proof: Take a, = (—1)" in Dirichlet’s test
Then A, = {0if nisevenso |4,| < 1and —1 if nis odd)

3.1.9 Theorem: Suppose
() legl = leg| = -
(1) cypp—q = 0,65, =0 (Mm=1,2....)
(iii) lim,, ., &, — 0. Then X3, €, converges.
Proof: Suppose
() legl = les] ===
(il) €3p—q = 0,65, =0 (m= 1,2 ...) and
(iii) lim, ., ¢,, = 0.
For integer n = 1, write a,, = (—1)"** and b,, = |, |
Now the partial sums sequence of series -, a,,. form a bounded sequence and
by =2 b, 2by =-+and lim, b, =0
So the above theorem X°_, a, b, converges.

= ¥>_, c, converges.

3.1.10 Definition: The series which satisfies the condition (ii) in the above theorem is called
as alternating series.

3.1.11 Theorem: Suppose the radius of convergence of X_,c,z™ is 1 and suppose

€y 2 ¢, = ¢y = lim, ¢, =0 Then X;_,c,z" converges at every point on the
circle |z| = 1, except possibly at z = 1.

Proof: Suppose that the series Ejf‘ 2 €n =" converges for all = such that |=z| =
Also suppose that ¢, = ¢, = ¢, = =~ lim, ¢, =0

For any integer n = 0, write a,, =z" and k,, = ¢,

Forn =0,letd, =Xi_,0a,

Then |4, | =lay +a; ++a,| =1 +z+z7 +- 427

=|£| 'lif|z|=1andz¢1

-z
Therefore wn = 0, |4, | = M where M = |l:Tz| iflzl=1landz#1

So the partial sums 4, of X} _, a, form a bounded sequence and
b, = b, = by = -+ and lim b, =0

n =
So the known theorem 2o _sa, b, converges.

Here, X " converges if | | =1and 7= 1.

HE‘H

3.1.12 Theorem: If ¥ a, | converges, then Ta, converges.
Proof: Givene =0, AN 3forn =m= N
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x4, < e
Since |Xa,| < e, ¥a, converges.

3.1.13 Remarks: If ¥|a, | converges, we say Y.a, converges absolutely, for La, (a, = 0),
absolute converges is same as convergence.

i-n
If Xa,, converges, X|a, | need not converges >:(—1) @ converges by Leibnitz test, but
not absolutely.

3.1.14 Theorem:If X a, = Aand X b, = B, then X(a, +b,) = A+ B and X ca, = c4 for

any fixed 'c’.
Proof: Suppose that X a, =4 and 2 b, =B
Forn = 0, write 4, =X} _,a, and B, =X} _,b,

Then {4, } and {B,, } are the sequences of partial sums of X at,, and X b,, respectively.
Alsoforn =0, A, +B, =2} _,a, + Xt _,b, = Xi_,(a,+b,)

So, {4,, + B, ] is a sequence of partial sums of the series X —;(a, + b,,)

Since Y a, =Aand X b, =E

we have that lim A, =Aandlim, . _FE, =8

So by a known theorem, lim, _.. (4, + 5,) =A + B and

Im, _..(cA,) =clim, A =cA, where cis fixed constant.

n

Hence, X(a, +b,,) =A + B and X ca,, = c4 for any fixed 'c

T —+00 n

3.2 MULTIPLICATION OF SERIES:

3.2.1 Definition: Given X}_,a, and X b,, we define C, = Za, b,_, and we call X C,,
the Cauchy product of X, and X b,,.
3.2.2 Remark: If > a, and 2 b, converges, the Cauchy product of X a, and X b,, need not

converge.

Leta, =b, = %, 2 a, and ¥ b, converges by Leibnitz test.
v

oGy
C:lz Z L Z |:1~,"f(”-+ 1) 1,':.(”- —k+ 1)

1 1
=}|C72|}Z|:.’ g ]:1
Jin+1) yn—k+1)

So that €, — 0.

Hence X C,, doesn’t converges.

3.2.3 Theorem: (Mertens)
If ¥ a, converges absolutely to 4 and X b,, converges and ¥ C,, = AB.

PI‘OOf: Let A” = Z a‘ky B;l; = E bk and C?! = Eck
Jﬁu - B:z_ﬂ'
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33

C,=Co+Cy+-....4+C,

=agby + (agh. + a,by) + -+ (agh, + a,b,_, + - +a,by)
=ayB,+a,B,_,+-+a,B,

=a,(B, +B) +a,(f,—, +B)+ +a,(f+B)

=A,B+ayf,+a, B, ,++a,f

Lety, =agff,, | ayff—y | - | a,8;

We will show that y,, — 0 so that C,, = 4, B — AB which proves the theorem.
Letax = Za,

Since 8,, = 0, given € > 0, choose N 3 |f,| <eVn= N.

So Iy, | = |Bpa, + 616,y + =+ Bya,_yl + 1Bysay_y + -+ B,Cl
< |Boay + -+ By eyl + €

Fix N and let n — o

Then lim|y, | < ea since a,, =+ 0 [ Zla,| converges]

Let € = 0. Then ¥, — 0 and this completes the proof.

SOME MORE EXAMPLES WITH SOLUTIONS:

3.3.1 Example: Find the radius of convergence of each of the following series

(a) Zn’z"
b ZZz"
(o) Z ;—I:Z "

(d) E:TZH

Solution: (a) The radius of convergence is 1,

. . . ]
Since a, = n? satisfies lim — =1

n—ra By

(b) The radius of convergence is infinite,

o7 ;
. 2 . . ] . ntl
Since a,, = — satisfies lim —— = lim — = o

n—=m Epyr n—oa 2

. .1
( ¢) The radius of convergence is -,

2" a 1 1% 1
Since a, = — satisfies lim ——= lim ;(1 t-) =3
n &

n—doa Bpyy n—oo 2

(d) The radius of convergence is 3,
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3.3.2

3.33

] 3
. n . . i . [
Since a,, = = satisfies lim —- = lim 3 (— ) =3.

n—oa Bqy n—+oa nt+l

Example: Suppose that the coefficients of the power series X a, z™ are integers,

infinitely many of which are distinct from zero. Prove that the radius of convergence
is at most 1.

Solution: The series diverges if |z| = 1, since its general term does not tend to zero.
(Infinitely many terms are larger than 1 in absolute value).

Example: Suppose a, > 0,5, = a, + -+ a,, and ¥ a,, diverges.

(a) Prove that ¥ —2— diverges.

1+a,

(b) Prove that 28+ + ... + 2Nk = ¢ _ ¥ and deduce that & % diverges.

(c) Prove that 22 <
&,

(d) What can be said about X

SN+ IN+k N +i n
1

— 2 and deduce that & == diverges.
m m—1 ‘E.'I. 5;'1
]

1+

a
1 and.Ejﬁ—ﬂ—?
tin Than

Solution: (a) If a,, does not remain bounded,

el
then —2- does not tend to zero,
1+a,

In
l+a,

and hence the series X, diverges.

If a, < M for all n, then —2— = — fy,,
l4a, — 1+M

And hence again the series is divergent.

(b) Replacing each denominator on the left by 5.,

N+ . TNk wen
We haVe T + + Saris E ar (ﬂ-ﬂ;+-_ + ﬂ-ﬂ.‘.}: + + ﬂ-ﬂ.‘.}k]
“N+1 N+k N +R
1
5 (Swsr = Sn)
Nti

I

=1 —

Sk
It follows that the partial sums of the series X % do not form a Cauchy sequence. For,

no matter how large N is taken, if N is held fixed, the right hand side can be made

larger than é by taking k sufficiently large (since 5., — ).

(c ) We observe that if n = 2, then
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1 1 1
Since the series Z,!_,. P converges to —,
.

-1 n

It follows by comparison that Z converges

(d ) The series

If the sequence {na, } is bounded above or has a positive lower bound, it definitely

diverges.

. . 1 oo
Thus if na,, = M, each term is at least 7 ,,. and so the series diverges.

. 1 . . .
If na,, = e = 0 for all n, then each term is at least i —, and once again the series is

divergent.

. ]
In general, however, the series Z E?n_ may converge.
T

1., .
For example let @, = — if n is not a perfect square and

a, = — if n is a perfect square.

] ST

The sum of —"— over the non squares obviously converges by comparison with the

L

p series, p = 2.

As for the sum over the square integers it is Z = which converges by comparison

with the p series, p = 2.

Finally, the series X 1+Z';‘H is obviously majorized by the p series, p = 2, hence
m

converges.

3.3.4 Example: Suppose a, = U and X a,, converges. Put 1, = X7 -, a,,.
(a) Prove that ‘:—"" 4+ 22 1~ if m < n, and deduce that £ == diverges.
mn

n ™m

(b) Prove that = < 2[:\, T — T .+ ) and deduce that ¥, % converges.
vin

Solution: (a) Replacing all the denominators on the left-hand side by the largest one (7, ),

L. + +r? - . 7
Weﬁndl-l- = =T ==1--"

m n m m m




|Centre for Distance Education 3.8 Acharya Nagarjuna University|

Since 7, = 1,44

As in the previous problem, this keeps the partial sums of the series Z ';h from
mn

forming a Cauchy sequence.
No matter how large m is taken, one can choose n larger so that the difference

ay . 1 .
;:=m — is at least - since r, —* 0asn — oo,
Ty 2

(b ) We have % [,‘-'"T'_” + 2"l L +1) = Gy + g % = zﬂ':lz = 2(“:: — T —1)'
v v "I
Dividing both sides by ,/r,, + /1, ;, now yields the desired inequality.

. . — —
Since the series Z[v’ o~ Tns1 | converges to /1y,

It follows by comparison that Z 2= converges.

3.3.5 Example: Prove that the Cauchy product of two absolutely convergent series
converges absolutely.

Solution: Since both the hypothesis and conclusion refer to absolute convergence, we may
assume both series consist of non negative terms.

— %'n — %' — %'n 'k
Welets, =Xi-ga,.T, =Xizgb,and U, = X8 _ Eiga; by,

We need to show that I7,, remains bounded, given that 5, and T, are bounded.

To do this we make the convention that a_; = T_;, = 0, in order to save ourselves from

having to separate off the first and last terms when we sum by parts.

— k
We then have U, = 28 _, X a; b,._,

n K
= Z Z a; (T = Toemy-q)
E=g d=—ij=p

n k
k=0 j=0
n k
= Z Z (Qp—; — @y —;-1)T,
K=U J=u

L2 n
= § § (Qp—; = Apej1) 1}
=0 L=
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n
= E g”_}. ]'}
=0

Thus U,, is bounded, and hence approaches a finite limit.

3.3.6 Example: If {s,} is a complex sequence, define its arithmetic mean o,, = 0 by

_ Epta bty _
, =R (n=0,12,...).

(a) Iflim s, = s, prove that limg,, = s.

(b) Construct a sequence {=,,} which does not converge, although lim o, = 0.

(c¢) Can it happen that 5, = 0 for all n and that lim sup s,, = o0, even though lim g,, = 0?

) Puta, =s, —s,_, forn = 1. Show that s, — ¢, = —— X7, kay
Assume that lim(na, ) = 0 and that {z,, } converges. Prove that {5} converges. [This
gives a converse of (a), but under the additional assumption that na,, — 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M < o, |na,| < M for
all n, and lim o, = o. Prove that lim s, = ¢ by completing the following outline:

If m = n, then

m+l 1 n

Sp T 0y T —m [ﬂu - Crmj + —m z'=m+1(5':'z - Si.]'
For these i,
(n—t) o (n—m—L1)M
s, —s;| < <

i+l T m+2
Fix € = @ and associate with each n the integer m that satisfies

== :
m_HE:‘:m—i-l

Then (m + 1)/(11 —m) = le and |s,, —s;| < Me.

Hence lim,, __, supls, — g| < Me.
Since £ was arbitrary, lim s, = a.

Solution: Let € = 0.
Let M = supf{|s, |}, and

let Ny be the first integer such that |s, —s| < = forall n = N,.
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LetN = max(ND, [M] )’

E

Then if n = N, we have

(s —5)+(5,—-5)++(5,—5)

lx, — =] =

" nt+1
< (sy— ) +-+ [:Sn-,:, - 5'} S+l _"-:") + (s, — 5)
- n+1 n+1
The first sum on the right-hand side here is at most W’ and since
n
n+1= M, this sum is at most ;
E &=

':rz N }

L . . 3
o which is at most —.

The second sum is at most

n

Thus |z, — sl = € if n = N, which was to be proved.

(b)Lets, =(—1)"

Here g, is 0 if n is odd and ﬁ if nis even.

Thus ¢,, — 0, though s,, has no limit.

(c)Lets, = ?—t if n is not a perfect cube and s,, = 3/n if n is a perfect cube.

Then if k* < n < (k + 1)% we have

1 n 1 1 k
< - :
Tn = n+ 1Z,n=1m * n+ 12}:;’

1 (Z” 1)+ 1 k(k+1)
T n+1 m=11/ m+1 2

The first sum on the right tends to zero by part (a) applied to the sequence s, = 0,

1
5, = -forn=1.
n

. .. 1
As the last term, since n = k?, it is less than — +

=T o which tends to zero as k — oo,

Since (k + 1)* = n, it follows that k tends to infinity as n tends to infinity, and hence

we have g,, =+ 0, even though s,: — 0,
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(d) If we set ay = 55, we have 5, = Xi_;a,.

spta, t-tag

Thens, — o, =5, — ey

(n+ 1)ay +na. + -+ 2a,_, +a,
n+1

=(a,+a, ++a,_,+a,)—

_a, +2a,+-+n—-1)a,_, +na,
n+1

Which was to be proved.

If na, — 0, then the expression on the right-hand side tends to zero by part (a) with s,

replaced by na,,. Hence s, —ag, — 0.

(e) If m < n we have

_SD+"'+5':'1 SD+"'+sm
" m n+1 m+ 1

n

_( n n )( 1 1 )+ Z 5;
— Yo An+1 m+1 m+t+1

i=m+1l
n
m n L 1 Z
= e s,
m+1 " m+1 '

i=m+1

If we multiply both sides of this equation by E, and then transpose the left-hand side

to the right and the term o,, to the left, we obtain

n

m+1 1
—0p = (J:'z - Jm) - Z £y

m—n n—m
i=m+1

Adding s,, = _; T 415, to both sides then yields the result.
We then have
S| — 1 1 [(m—i)M™
s, =5l = legsy + -+ a,l < M(m—l_ +; = i1
. . om= +1 : . . .
Since the function ﬁ = :Tl — 1 is decreasing, the maximal value of the right hand

I'::l:l—:l'n— Ij

side here is reached with i =m + 1, so that |s, — 5| = —+w as asserted.
m
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When we choose m to be the largest integer in ’H;E, we clearly have m < n.
E

Since & is fixed, we can assume i == e.

(n—m- J.}M

The inequality ”;'_E::: m+ 1 can easily be converted to = g, and the

oz

n—m €

inequality m <

The first of these implies that m — o as n — @, and we have

1
Is, — &, “_=~;|ET;.2 —a,, | + Me for all n.

This implies that the limit of any subsequence of |s, — @, | is at most M e, and since € is

arbitrary, every convergent subsequence of |s,, — o, | converges to zero.
This, of course, implies that 5,, — @, tends to zero, so that if g, — s, then 5,, — s.
Exercise For Lesson-2 & Lesson-3

Test for convergence, the following series:
L O+ az(i+d)”
Ans: (i) Divergent (ii) Convergent
2. Z[ (n® +1] —n]
Ans: Divergent
3. [ n? +J.)—\-n]

Ans: Convergent

1.2 3.4 5.6

4. 32.47 + 52,62 +?=.3= +

Ans: Convergent

1 2 3

5. 1+27% + 1+:-=+ 1+27¢ +

Ans: Divergent

nt

6 2o

Ans: Convergent if p — g + 1 > 0 and Divergentif p—g +1 =0
7. ¥ _n®

(n—2]!
Ans: Convergent
n®+a
8 X (:-‘l-r n)
Ans: Convergent
9. (i) Zcos— (i) L sin>
Ans: Both Divergent
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0. 1+Z+54+5+
Ans: Convergent if x = 1, divergent if x = 1.

. x()

x+n

Ans: Convergent if x < 1, divergent if x = 1
2 3..:' 4P
12. 1+:—|+?+;+"'
Ans: Convergent

2 3t 4 4f (n+1m
3. Sx+getdgadd et a4

Ans: Convergent if x < 1, and divergent if x = 1.

14. Show that the series
; (a+1)(2e+1) | (a+l)(2a+1)(3a+1)
1+ B+1 + (B+10( 28 +1) + (B+1I(28+10(38+1)

divergesifa = f =D.

+ -+ converges if f>a =0 and

. . 1 .. a®
15. Test for convergence the series whose n®" terms are (i) o= ()

Ans: (i) Convergent if x > 1 or x < 1, divergent if x = 1.

(i1) Convergent if x = a and divergent if x < a.

16, Z4if g 2i¥ L 235% ..

2% 24t 2% 4t gt
17. 1+3—=+3—=;+3—=5—5;+"
Ans: Divergent
12 2 gf 12 3% 52 2
18 tEExtEssr b

Ans: Convergent if x < 1 and divergent if x = 1.
19. x+:" "+3.r+4.r + -

2! 3! &
Ans: Convergent if x < j, divergent if x =

1

.

135 +* 13579 #°

246 8 | 24681012

Ans: Convergent if x* < 1 and divergent if x* > 1
alatl) | ale+lliat+d)

9 :r’=
20. x +;T +

21. 14+ a4+ e + o3 +
Ans: Convergent if @ = 0 and divergent ifa = 0
a alat2) alat2)(a+s) 7 4
22. atd | n’_n+:qj.:-7+!;jx T n’_n+:4)|'_n+!;j(n+'rjx +
Ans: Convergent if x = 1and divergent if x = 1
1! 1! 5! 1! 5! I}! 5
B gteetaemr ?
Ans: Convergent

ala+1)* 2 ala+1) as+2)”
'_.:,El:|[?+1:lx + LIIB(R+LYE+2)
Ans: Convergent if x <~ 1and divergent if x = 1 and when x =1, then

3 4 -

24, 1+ﬁx+

convergent if £ = Za and divergent if £ = 2a
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25 :z-l-_.r_l_ l::z+2.r}=+|:n+3.r}=

1! 2! al
Ans: Convergent if x < f, divergent if x =

1
g

u nF+antLteEn 2 4onktt
26 If ==

T " S T e

where k is a positive integer, show that the series

2 u, is convergent if A —a — 1 is positive and divergent if 4 —a — 1 is negative
or Zero.

3.4 SUMMARY:

This lesson provides a comprehensive introduction to Power series and Multiplication
of series including Convergence and divergence. Key concepts are defined, and
theorems are supported with proofs. Additionally, examples are provided to illustrate
the applications of these concepts.

3.5 TECHNICAL TERMS:

¢ Alternating series
+ Bounded sequence

o
8

*
c
2.
-

R/

% Partial summation
+» Power Series

+»*» Radius

% Supremum

3.6 SELF ASSESSMENT QUESTIONS:

1. Find the radius of convergence of each of the following series
a) Lniz"
DPEES
(1M
2. Suppose that the coefficients of the power series X a,z" are integers, infinitely many
of which are distinct from zero. Prove that the radius of convergence is at most 1.

3. Prove that 2¥+: 4 ... 4 9N+k > 1 _ N apddeduce that X ;—" diverges

W +1 SNk N+k n
4. What can be said about £ —="— and T, —=-2
l+nay 10,
12 | 135x* 13579 = o3 . cn 3
bl il Wil T 2 52
5. x4+ St ot ot Convergent if 2~ < 1 and divergent if x= = 1. [s
it true or false.
(atIx)? i 2 . 1 . . 1 .
6. ‘T—x + ‘“t‘lﬂ + ‘“ij} + -+ Convergent if x < -, and divergent if x = -. Is it true or

false.
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3.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2™ Edition, 1985.

Dr.U. Bindu Madhavi



LESSON-4

LIMITS OF FUNCTIONS AND CONTINUOUS
FUNCTIONS ON METRIC SPACES
OBJECTIVES:

The objective of the lesson is to help the learners to understand

¢ To understand the concepts of limit and continuity of functions on metric spaces that
is essential in the study of real world applications such as modeling motion, force and
energy.

% To develop problem solving skills in calculus and analysis.

STRUCTURE:

4.1 INTRODUCTION

4.2 LIMITS OF FUNCTIONS

4.3 CONTINUOUS FUNCTIONS

4.4 SUMMARY

4.5 TECHNICAL TERMS

4.6 SELF ASSESSMENT QUESTIONS
4.7 SUGGESTED READINGS

4.1 INTRODUCTION:

In this lesson the notion of metric space, open set, closed set, compact set connected and limit
of a function from one metric space into another is introduced. If X and ¥ are metric spaces
and E € X and fmaps E into y and p is a limit point E, then lim,___ f(x) = g if and only if
lim,_._f(p,)=q for every sequence {p.} in E such that P ,+ P for all n and
lim,__f(p,) =p is proved. Next the continuity of a function from a metric space into a
metric space is defined. It has also been proved that if X and ¥ are metric spaces, £ = X and
fmaps E into ¥ and if p = E is a limit point of E, then f is continuous at P if and only if
lim, . f(x) = f(p). Further it is proved that a mapping f of a metric space X into a metric

space ¥ is continuous on X if and only if f~(V") is open in X for every open set V in ¥

4.1.1 Definition: Let J denote the set of all positive integers and for any n, [,, be the set of
integers 1,2,3,, 1

A Set E is said to be

(i) finite, if A~J,, for some n

(ii)  infinite, if it is not finite.
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(iii)
(iv)
)

countable or denumerable if 4 ~ |
atmost countable, if it is either finite or countable

uncountable, if it is neither finite not countable

4.1.2 Note:
(1) The set Z of all integers is countable
(2) IfE is countable and A4 is an infinite subset of E then £ is countable
(3) Theunion of countable family of sets, each of which is countable also countable.
(4)  The Cartesian product of two countable sets is countable.
(5) The set of rational numbers is countable.
(6) Everysegment in R is uncountable
(7)  The set of real numbers R is uncountable.

4.1.3 Definition : Let X be a non-empty set. For any p, g € X. We associate a real number
d(p,q) called the distance between p and g satisfying the following conditions.

(i) d(p.q) =0

(i)
(iii)
(iv)

d(p,.q)=0ifandonlyifp=1

d(p.q) =d(q.p)
d(p.q) =d(p,v) + d(r,q)foranyr EX.

Then d(p, q) is called a distance function or a metric. A set X on which a metric d is define
is called a metric space and is denoted by (X, d].

4.1.4 Definition : Let X be a metric space

(i) A neighborhood of the point b € X is the set {q € X |d(p,q) < r} and it is denoted

(ii)

(iii)
(iv)

)
(vi)

by N, (P).

Let E € X. A point p € X is a limit point of the set E, if every neighborhood of P
contains a point 4 such that § € X and 7 = n.

A set E is said to be closed if every limit point of E is a point of E .

A point p is said to be an interior point of E, if there is a neighborhood N of p such
that N — E-

A set of E is said to be open, if every point of E is an interior point of E.

Every neighborhood is an open set.

4.1.5 Definition: Suppose X is a metric space and E < X. A collection of {G .} open sets in
X is said to be an open cover, if E = U, {Gg}.
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4.1.6 Definition: A subset K of a metric space X is said to be compact, if every open cover

of k contains a finite sub cover.
(i.e., there exists finite collection @1,a@2 ,a&3 ,....¢5 )

suchthat k € Gg, U Gg, U Gy U ... UG .

4.1.7 Note: (1) Every compact subset of a metric space is closed.

(2) Every closed subset of a compact metric space is compact.

4.1.8 Definition: Let X be a metric space and E is subset of X.

(1) The set E is said to be perfect set, if E is closed and if every point of E is a limit point

of E.

(2) Two subsets A and B of X are said to be separated,if An B =0 and An B =0.

(3) The subset E of X is said to be connected, if it is not union of two non empty separated

sets.

4.2 LIMITS OF FUNCTIONS:

4.2.1

4.2.2

4.2.3

4.24

Definition: Let (X, a,) and (¥, d,) be metric spaces; suppose E € X, fmaps E into ¥
and P is a limit point of E . If there is a point g € ¥ with the property that for every
€ > 0, there exists a § = 0 such that d,(f(x),q) < € for all points x € E for which

0<d,(xp) =43, then we write /(x) = gasx — p,orlim, __f(x)=q.

Note: Suppose ¥ =¥ =R and d,(x,v) =d,(x,¥) = |x —y| for all X,¥ € R and
also suppose E € I, F is a limit point of E. Then f: E =+ R is said to have a limit

as x — p, if there is a ¢ € R satisfying the condition : for every £ = 0, there is a

& = 0 such that |f(x)-g| <eforallx € Ewith0 < |x — p| < &.

Example: Suppose [ : R — R is defined by

4+ 2 if 2 .
f[x)={TJ £ 7 Thenlim,_,f(x) = 4

Let e = 0. Take & = €. Then forany x with 0 < [x-2| < &
If(x)-4| = |x+2-4| =|x-2|< § =€
i, o f () = 4

Theorem: Let (X.d,) and (¥, d,) be metric spaces and E € X and f maps E into ¥ and
p is a limit point of E. Then lim,_ f(x) =gq if and only if lim, __f(p,) = q for
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every sequences {p,, } in E such that P, = P foralln and lm,, ___ f(p,) = p.

Proof: Given that X, ¥ are metric spaces and E € X and fmaps E into ¥ and F is limit point of
E.

Suppose lin, ./ (x) — ¢

Let {p, } be any sequence in E such that B, # P and lim, __.f(p,) =p

Let € = 0 Since lim, ., f(x) =g, there exists § = D such that d,(t(x),q) < €
if xeEE and0<d (x,p)<6 ... (D)

Since B, # Pand lim P, = p, there exists a positive integer ¥ such that

n—oa TN

0<d,(x,p) <5 foralln=N

Then, by (1) d,(f(p;,).q) < E foralln =N
~lim,_ f(n) =q

Conversely suppose that lim,_, . f(x) # q

Now we will show that there exists a sequence {p, } of points in E such that B, # P and
lim, . p, = p does not imply lim,, ... p,, = g

Since lim,. ,, f(x) # g there exists £ = 0 such that for every g = 0, There exists a
point x € E (depending on § ) with d, (f(x).q) = Ebut 0 <d, (x;p) < &. This implies
foreach &,, — %(u — 1,2, ....), there exists a point p,, € E such that d, (f(p,,).q) = E
but0 < d_(p,;p) < 0, Consequently lim,, . B, # p

Now we will show that P, = P for all  and lim P =p

n n—oa T n

. 1
Since 0 < d, (pip) < ~wehave B, # P forn =12, ...

Let € = 0. Choose a positive integer N such that € < ?—lz Now for all n = N. Consider

. 1.1
dy(pyip) < S=L €

L

This implies 4, (p,; 2} < e forall » = N and hence lim,, ., P, = p

Thus there exists a sequence {p, } of points in E such that B, # P and lim,__ P, = p
but lim,, . P, # g.

4.2.5 Corollary: Suppose f is mapping of a metric space (X, d,) into a metric space
(Y,d,). If im

W () exists in ¥, then it is unique.

Proof: Suppose lim, _,,f(x) exists in ¥.

Suppose lm, ., f(x) = g, and lim,._, , f(x) = q, where g,,q, E Y.
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Claim: g, = g,

Let {p,, } be any sequence of points in X suchthat B, # P and lim, ., p, = p. Thenby
the above theorem, lim,, __.. f(p,) = q, and lim__,__f(p,) = q.. So {f(p,,)]is 0, sequence of
points in ¥ such that , lim,, .. f(p,.) = g, and lim, .. f (p,) = q,: since limit of a sequence
is unique.

We have g, = a,

4.2.6 Definition: Let X be a metric space and let f and g be complex valued

functions defined on X. Now we define f * g, fg, f/g as follows.
Let x £ X. Define (f + g)(x) = f(x) + g(x)
(fo)(x) = flx)glx)

T if g9 =0

alax)

f —_
andg(x) =

4.2.7 Definition: Let f and g be functions defined from metric space X into R*
Then we define
(f +8)(x) = f(x) + a(x)
(fg)(x) = f(x)g(x) and

(Af)(x) = Af(x) for any real 1 and for all x € X. If f and g are real valued functions and if
flx) = g(x) for all x € ¥ we write f = g.

4.2.8 Theorem: Suppose (X,d) is a metric space and f, g are complex valued functions

defined on E < X. Suppose p is a limit point of E. If lim,. ,,f(x) = Aand lim_ , g(x) = B
then

@ lim, . (f+8)(x)=A+B
(i) lim, _,,(fg) (x) = AB
(iii)lim, _, , (9 (x) = ﬁprovided B+0

Proof: Since lm,_, ,f(x) = A by Theorem 4.2.4. We have lim, ... f (p,) = 4 for any
sequence {p,, } of points in E with lim,, . p, = p and p,, # p for all n.

Since lim,,_,,, g(x) = B by Theorem 4.2.4. We have lim,,_...g(p,,) = B for any sequence
{p,} of points in E with lim, _,_.p, = p and p,, # p for all n.

(i) Suppose that {p,} is a sequence of points in E such that lim, ,__ p, =pandp, # p

for all n. Consider
1in11! —+00 (f + gj [p'ﬂ] = ]'j'nlllll—"':ﬂ f(p:l:l) + g(p:l:l)

= ]'j'nlli"—"':ﬂ f(p?!) + ]'j'nlli'!—"':ﬂ g(p?!j

=A+B
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Therefore, im,_,(f + 8)(x) = A+ B

(ii) Suppose that {p, } is a sequence of points in £ such that lim__,__ p, = pandp, # p

for all n. Consider

liens, ., (F8) () — lim,, o, (F (1) + 8(p,))
=lim, .. f(p,)+lim,__ g(p,)
=AEB

Therefore, lim, _, (fg)(x) = AB

(iii)Suppose that {p, } is a sequence of points in E such that lim____p, =pandp, #p

for all n. Consider

i ik ) Flpg)
111]1?! —+o (E}I (pu) = 111]1?! —+ (g(p:j)

_limp i Flpg)

limy_, o gl:F'n:'

_ 4
B

i (f A
Therefore, lim, _,, {E) (x) =7

4.3 CONTINUOUS FUNCTIONS:

4.3.1 Definition: Suppose (X,d,) and (Y. d.) are metric spaces, £ € X, P E E and f
maps E into ¥. Then f is said to be continuous at p if for every € = 0. There exists a & = 0
such that d,(f(x), f(p)) < ¢ for all points x € E for which d,(x,p) < &. If F is

continuous at every point of E then f is said to be continuous on E.

4.3.2 Definition: Let (X,d) be a metric space and E © X: A point p € E is said to be an
isolated point of E if there is a neighborhood N; () of P such that N, (p) has just one point p
of the set E.

Thatis N(p) ={x € E| d(x,p) < &} ={p}and {x €eE|0 < d(x,p) < 6} =0

Therefore if p is an isolated point of E, then the condition, in definition 4.3.1,

d, (f(x), f(p)) < e forall x € E with d,(x,p) < & holds obviously. Hence if p € E is an

isolated point of E. Then f is continuous at p.
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4.3.3 Example: Define f: E — R as

_(x+2 if x+2
f(x)_{n if =2

Then lim, ., f(x) = 4. But f(2). So f is continuous at x = 2.

4.3.4 Example: Define f: R — R as f(x)= x+ 2 for all x € R. Then lim__, f(x) = 4

and is equal to f£(2). So f is continuous at x = 2.

4.3.5 Theorem: Let (X,d,) and (¥, d,) be metric spaces, E € X, and f maps E into ¥. If

p € E is a limit point of E, then f is continuous at g if and only if
lim f(x) — f(p)
xp

Proof: Consider f is continuous at p if and only if for each € = 0, there exists ad = 0
such that d5(f(x).f(p)) < € for all points x € E for which d(x,p) < & if and only if
lim, ., f(x) = f(p) (~pisa limit point of E).

4.3.6 Theorem: Suppose (X,d,), (¥,d,) and [Z,d;) are metric spaces, E £ X, f maps
E into ¥, g maps the range of f, f(E), into Z and h is the mapping of E into Z defined
by h (x) = g(f(x)) for all x € E. If f is continuous at a point p € E and if g is

continuous at the point £(), then h is continuous at p.

Proof: Suppose f is continuous at p € E and g is continuous at the point f(p). Let € = 0.

Since g is continuous at f(F), there exists an 7 = 0 such that

ds(8(y). 8(f(p))) <€ whenever d,(y, f(p)) <n andy € f(E)......(])
Since f is continuous at p, there exists a § = 0 such that d,(f(x), f(p)) < n
whenever d,(x,p) < fandx € E....... (2).

Suppose x € E such that d,(x,p) < 4. Then consider

da(h(x), h(p)) = di(g(f(x))a(f(p))) <€ (from (1) and (2))

Thus for € = 0, there exists & = 0 such that

dy(h(x), h(P)) < € whenever d,(x,p) < §. Therefore h is continuous at p.

In the above theorem, i is called the composition f and g and we write h = gof.
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4.3.7 Theorem: Suppose (X, d) is a metric space and f, g are complex valued functions
defined on X. If f and g are both continuous at p € X, then f + g, fg and é (if g(p) = 0)
are continuous atp € X.

Proof: Suppose (X d) is a metric space and f,g are complex valued functions defined
on X is continuous at p. So f + g, fg, and é are continuous at p

Case (ii): Suppose p is a limit point of X.

By Theorem 4.3.5, f is continuous at p if and only if lim, ., f(x) = f(p) and g is
continuous at p if and only if

lim, ., g(x) = g(p)- Then by Theorem 4.2.8
lim,_,(f + g)(x) = f(p) + g(p) = (f + 2)(p)

~ f + g is continuous at p. (By Theorem 4.3.5)
Consider lim, _, ,(fg)(x) = f(p).e(p) = (fg)(p) (By Theorem 4.2.8)

By Theorem 4.3.5, fg is continuous at p. Suppose g(p) = 0

Consider lim, _, , (fl' (x) = f'_aﬂ (By Theorem 4.2.8)
B/ glp)

By Theorem 4.3.5, L is continuous at p.

g
4.3.8 Theorem: (a): Let f,, f5, fi. f: be real functions on a metric space X, and let f be the
mapping of ¥ into IR¥ defined by f(x) = (fi(x).fa (%), s fr(x)) (x EX); then f is
continuous if and only if each of the functions f;, f,,...... f. are continuous.
(b): If f and g are continuous mappings of X into R* then f+ g and f.gare

continuous on X.

Proof: Given that f is mapping of a metric space (X,d) into R¥ defined by
f(x)=(fi(x)fo(x)ene.., filx)) where [y, f5,......, fi. are real valued functions defined on
X

(a) : Assume [ is continuous on X.

Let x € X and let € == 0. Since f is continuous at x . Then there exists a § = 0 such that

|F(x)-f(»7)| < e whenever d(x,y) < g, for ¥ €X

= (ZF_ 1) = (7)< eford(x,y) <6
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= |fi(x)-fi(y)| < eford(xy) < gandfori < i < k
= f,iscontinuousat x for1 < i =<n

Since x € X is arbitrary, f; is continuouson 1 < i < k.
Now, we will show that f is continuous on X.

Let x € X and let € = 0. Since each f; is continuous at x, there exists a &; = 0,

4

Such that |,|r:ixj—,|r:[vj| = % whenever d(x,v) < &, and for { « i « k.

Take § = min {§,, 8, - §,].
Suppose d(x,¥) << §. Then d(x,¥) < for 1 « i < k.

= |f(0)-fi(»)] :::;;for 1<i<k

Consider |f;(x)- i ()" = (Zke, 1 (x) — ;2-(}-)|2)i < k.~

= |f()-f()|<e
Therefore f is continuous at x.

Since x € X is arbitrary, f is continuous on X.

(b): Suppose f and g are continuous mappings of X into defined by

f(x)=(A(x). (), e, fi(x)) and g(x) = (g4(x), 85 (x), oo ... gie () ] With
fiforeeen. N S - , g, arereal valued functions defined on X. Since f and g are
continuous on X, by (a), each f, is continuous on x and each g, is continuous on X. Then by
Theorem4.3.7. f; + g; and f;g; arecontinuous on X for 1 = j < k. Since

(f +e)(x) = (fi +8)(x). (5 +g5)(x) o (fi + g82)(x) for all x € X, by (a), f+gis
continuous on x for 1 < j < k. Since f,g, is continuous on X for 1 < j < k we have L', f;g;

is continuous on X and hence f.g is continuous on X.

4.3.9 Example: Every polynomial with complex coefficients is continuous at every point of

C. For, let p(x) = ay +a,x+ -+ a,x” where a,+ a, +--+a, are complex
numbers.

Consider p: :I — (Ias a function.

Define I: p: (I - (I as I{x)=xforall x € (I Then I is continuous at every point of q for

>0 is given, taking & =€ for all x€ T with 0< |* - al< 48 we have
[I(x)—I(a)|=|x —a| <& =€ =1is continuous.
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= I%(x) = I{x)I{x) = x? is continuous

I"(x) = x™ is continuous

It is easy to verify that every constant function is continuous.
Therefore f,(x) = a,

filx) = a;x = a,I(x)

fo(x) = ayx = a,I*(x)

f(x) = a,x = a, I™(x) are all continuous on q.

Hence f (x) + fi(x) 4o +£,(x) = p(x) is continuous on .

4.3.10 Definition: Suppose f: 4 — E is a mapping where 4 and 3 are any two sets. For any
T < A [(T) — {/(x)]x € T}is called the image of T under f For any ' = B, the set
fx € A|f(x) € V] is called the inverse image of VV under [ and is denoted by

f1(V). Thatis fY(V)={x €A|f(x)EV}
4.3.11 Theorem: Suppose f: A = B is a mapping. Then for every set V « B,
M F1vo =[rm]

@ f (1) v
Proof: (i) Consider x € "' (V] & x € A and  (x) € V*
eorxedandf(x)eVexe YY)
exe(m)
v = (o)
(i) Suppose £ € (1 (V)°) = [f(x) | x€ /(1)

=t = f(x) for some x, € [(V)
=t = f(x) for some x, € Awith f(x,) EV
=telV
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~f (riwj) cV.

4.3.12 Theorem: A mapping f of a metric space (X, d.) into a metric space (¥, d,) is
continuous on ¥ if and only if. /= (V') is open in X for every open set IV in ¥

Proof: let f: X — ¥ be a mapping

Suppose f is continuous on X.

Let ¥ be an open setin ¥.
Now we will show that every point in f~* (V) is an interior point of it.

Let x € f Y(V). Then f(x) €EV. since V is an open set in ¥, there exists € = 0 such that

N_(f(x)) € V. Since f is continuous on ¥. f is continuous at x. Then there exists & = 0
such that d5 (f (), f(x)) < € whenever dy (2, x) < §

This implies f(z) € N_(f(x)) whenever z € Ng(x). That is, f(z) € V whenever
z € Ns(x). That is z € f (V) whenever z € N (x) and hence Ns(x) € f~'(V). Thus
f~1(V) is open in X whenever V is open in X.

= x is an interior point of /= (¥). Hence f ~* (V) is open in X.

Thus f~* (V) is open in X whenever V is open in ¥.

Conversely suppose that /=~ (1) is open in X for every open set VV in ¥.

Now we will show that f is continuous at ever point of let p € X and let € = 0 now

N_(f(p)) is an open set in ¥. By our supposition /' (N(f(p))) is an open set in X and
p € f"H{N({f(p))). Then there exists § => 0 such that

Ns(p) S f "1 (N.(f(p))). This implies £(Ns(p)) € N_(f(p))

That is, if dy(x,p) < &, then d;(f(x),f(p)) < €. This shows that f is continuous at p.

Since p € X is arbitrary. f is continuous on X.

Thus £ is continuous on X if and only if f ~* (V') is open in X whenever V is open in X.

4.3.13 Corollary: A mapping of a metric space X into a metric space ¥ is continuous
if and only if [~ (V) is closed in X for every closed set V in Y.

Proof: let I:X — Y be a function. Let V' be any closed set in ¥. Consider f is continuous

on X if and only if f~*(V“) is open in X (by Theorem 4.3.12) if and only if (f'i {Uj]t is
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openin ¥ (-- f~Y(V)* = f~'(V)ifand onlyif f ' (V) is closed in X). Thus f is continuous

on X if and only if f ' (V) is closed in X for every closed set V" in ¥.

4.3.14 Problem: If £ is a continuous mapping of a metric space ¥ into a metric space ¥,

prove that f(E) € f(E) for any subset E of X.

Solution: Suppose f is a continuous mapping of a metric space X into a metric space ¥
and £ © X. Now S(E) is a closed subset of ¥ containing f(£). Since f'is continuous on
X, by corollary 4.3.13, f'imis a closed set in X and E € f'f(E). Since E is

the smallest closed set containing E. we have EC [ 'f(E). This implies

f(E) € f(E). Thus forany subset Eof X, f(E) = f(E).

4.3.15 Problem: Let f be a continuous real function on a metric space X. Let Z(f) (the

zero set of f be the set of all p € X at which f(p) = 0. Prove that Z(f) is closed.

Solution: Given that f is a continuous real function on a metric space X and
Z(f) = {p €XIf(P): O}
Claim: Z () is a closed set.

Let y be a limit point of Z(f) in X. Then by a known theorem, there exists a sequence
{x,]) of points in Z(f) such that x, — ¥. Since f is continuous, by Theorem 4.2.4, and
Theorem 4.3.12. we have f(x,) converges to j(y). This implies

f(y) =lim  f{x,) = 0 (= 2, £ Z(f) for all n) and hence ¥ € Z(y), This shows that Z{))
is a closed set in X.

4.3.16 Problem: Let f and g be continuous mappings of a metric space X into a metric
space ¥ and let E be a dense subset of X. Prove f(E) is dense in f(X). If g(P) = f(P)

for all p € X, prove that g(P) = f(P) for all p € X (In other words, a continuous mapping
is determined by its values on a dense subset of its domain)

Proof: Given that f and g are continuous mappings of a metric space X into a metric space
¥ and E is a dense subset of X,

Claim: f(E)is dense in f(X). Thatis, f(E) = f(X). Clearly f(E)  f(X)
Let ¥ C f(X). If ¥ C f(E), theny C f(E)

Suppose y & f(E) in this case we will show that, v is a limit point of f(E).
Since y € f(E), ¥ = f(x) for some x € X. Then x & E.

Since E is dense in X, x is a limit point of E. Then by a known result, there exists a sequence
{x.}of points in E such that {xn} converges to x. Since f is continuous and {xnl converges
x, by a known result. {f{ *,)} converges to f(x). Now {f( *,)]is a sequence of points in
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f(E) such that {f(*.)} converges to ¥. This implies ¥ € f(E) this shows that
f(x) c f(E)and hence f(E) = f(x).

Suppose f(P) = g(P] forall p € X.

Now we will show that f(x] = g(x) forall x € X

Let x € X. Since E is dense in X, there exists a sequence {*,.} of points in E such that {x,,}
converges to x Since f and g are continuous on X, we have {f( *.)]} converges to f(x)
and {g( x,,)} converges to g(x).

Consider f(x) =lim , f(x,)=1lm , g(x,) = g(x)

(v x, EE forall mand f(x,) = g(x,))
o flx) =g(x) forall x € X,

4.3.17 Problem: The function f: R¥ — R* given by f(x) = x? is continuous on ¥,
Solution: Let x; E B* and = = 0

Now 1¥7 — x| = |(x + %) (x — %) < (x| + [%a) |2 — xy),

If |x — x| < 1 s0 that |x| = |xg| + 1L

Then 1x* — il < 2l Hlx—x0) < e

If |x —x4] <

£
2|xo|+1

E

Soif & < min(l,—) then |x —xg| < &

zlxpl 11
= |x*— x2| < ¢, so f is continuous on R.
Model Examination Questions
1. If(X,d,) and (V,d,) are metric spaces and E € X and if f maps E into ¥ and pisa
limit point of g, then show that lim ., f(x)=g if and only if
lim, .. f(p,) = g for every sequence {p,} in E such that p, = p for all n and
lim,! —oa Pp = P-

2. Suppose X,¥ and Z are metric spaces and f maps X into ¥ and g maps ¥ into Z and
h is the mapping of X into Z, defined by hix) = g(f(x)) forall x € X.If f is
continuous on X and g is continuous on ¥, then show that k is continuous from X

into .
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3.

4.4

4.5

Show that a mapping f of'ametric space X into ametric space ¥ is continuous on X if

and only if f ' (V') is open in X for every open set V in X for every open set ¥ in

¥,

Let f and g be continuous mappings of a metric space X into a metric space ¥ and
let E be a dense subset of X. Prove that f(E is dense in f(X). If g(p) = f(P) for
all p € E. then prove that g(P) = f(P) forall p € X.

Exercises
Suppose f is a real function defined on B which satisfies

Im, _o[f(x+ k) — f(x— h)]=0 for every x € R. Does this imply that f is
continuous?

If f is a real continuous function defined on a closed set E — R. Prove that there

exist continuous real functions g on R such that g(x) = f(x)- forall x € E.

Answers to Self Assessment Questions
For 1 see definition 4.3.1
For 2, see example 4.3.3

For 3, see problem 4.3.15

SUMMARY:

This lesson covers the fundamental concepts of limits and continuity of functions on
metric spaces, essential for modeling real-world applications such as motion, force, and
energy. The lesson aims to develop problem-solving skills in calculus and analysis.
And also covers Definitions of key concepts, Proofs of relevant theorems, Corollaries
to reinforce understanding, and Practice problems to develop problem-solving skills.

TECHNICAL TERMS:

% Compact

% Complex valued function
+ Connected

+¢ Continuous

¢ Countable or Denumerable
+» Finite

+¢ Function

¢ Infinite

% Interior point

% Isolated point
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% Metric spaces

% Neighbourhood

Open cover

Perfect set
Polynomial

Range

Real valued functions
Subset

Uncountable

Union

4.6 SELF ASSESSMENT QUESTIONS:

5

A

X3

S

X3

S

X3

S

X3

S

X3

S

X3

S

X3

S

1. When do you say that a function f from a metric space into a metric space is
continuous?

2. Show that the function f: R — R defined by f{x} =x + 2 forall x € Ris

continuous at x = 2.

3. Let f beacontinuous real function on a metric space X. Let Z(f) be the set of all

p € X at which f(p) = 0. Show that Z(f) is closed.

4.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hilllnternational
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

Prof. B. Satyanarayana



LESSON-5

CONTINUITY, COMPACTNESS AND
CONNECTEDNESS

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To understand the concepts of continuity, compactness and connectedness.
% To develop problem solving skills using continuity, compactness and connectedness.

STRUCTURE:

5.0 INTRODUCTION

5.1 CONTINUITY AND COMPACTNESS
5.2 CONTINUITY AND CONNECTEDNESS
5.3 SUMMARY

5.4 TECHNICAL TERMS

5.5 SELF ASSESSMENT QUESTIONS

5.6 SUGGESTED READINGS

5.0 INTRODUCTION:

In this lesson the behaviour of continuous functions-when they are defined on compact
sets or connected sets is discussed. It is proved that if f is a continuous mapping of a compact

metric space X into a metric space Y, then f(x) is Compact. It has also been proved that a

continuous 1-1 mapping of a compact metric space onto a metric space is a homomorphism.
Further the uniform continuity of a function from a metric space into another metric space is
defined. It is also proved that a continuous mapping of a compact metric space into a metric
space is uniformly continuous Further it is proved that continuous image of a connected set is
connected.

5.1 CONTINUITY AND COMPACTNESS:

5.1.1 Definition: A mapping f of a metric space X into E¥ is said to be bounded if there
exists a real number M such that |f(x)| = M for all x € X. That is f: X = R¥ is bounded if
the image f(X) is a bounded set in R¥.

5.1.2 Theorem: Suppose f is a continuous mapping of a compact metric space &

into a metric space ¥. Then f(X) is compact.

Proof: Suppose X, is a compact metric space and f: X — ¥ is a continuous mapping. Let {V_}_ -
be an open coverof f(X)in¥.Then f(¥) € U

in ¥ for each @ € A the inverse image /="' (V) is openin X for each & € A. Also it is clear that

.=a Vo Since f is continuous on X and V, is open
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X S U,., f(v,). This implies that (f'l[vﬁj) is an open cover for X. Since X is

aCA
compact, there exists @, &,...,a, EA such that XS UL, f ‘1[1@[]. This
impliesf (X) € Ugca Vs, Therefore f(X) is compact. This theorem can also be stated as “The
image of a compact metric space under a continuous mapping is a compact metric space or
the continuous image of a compact metric space is compact”.
5.1.3 Theorem: If f is a continuous mapping of a compact metric space X into then f(X’)

is closed and bounded. Thus f is bounded.

Proof: Suppose f is a continuous mapping of a compact metric space X into. Then by
Theorem 5.1.2, f(x) is a compact sub set of R¥. Since every compact subset of R* is
closed and bounded, f(X)is closed and bounded. This implies there exists a real number M such
that [f(x)| = M for all x £ X. Therefore f is bounded.

5.1.4 Corollary: If X is a compact metric space and f is a continuous real valued function on
X, then f(X) is bounded.

Proof: Taking k = 1, the corollary follows.

5.1.5 Theorem: Suppose f is a continuous real function on a compact metric space X and
sup,cx f (), inf, . x f(p). Then there exist points p, g € X such that f(P) = M and

flg) =m.

Proof: Let X be a compact metric space and f be a continuous real function on X. Then by
Theorem 5.1.3, £ (X is closed and bounded. Since f(X) is bounded, we have sup f{x) and
inf f(x) exist in R. Since f(X) is closed in K, by a known theorem, sup f (x) € f(X)

and inff(x) € f(X). This implies sup..;f(X)=f(p) and inf ., f(X) = f(p), for
some p, g € X. Thus there exist p,g € X such that f(P)= M and f(g) = m.

5.1.6 Note: The notation in the above theorem means that M is the least upper bound of the
set of all numbers f{p), where p ranges over X and that m is the greatest lower bound of this
set of numbers.

5.1.7 Note: The conclusion in the above theorem may also be stated as follows. There exist
points p and g in X such that fig) < f(x) < f(p) for all x € X. that is, f attains its

maximum (at p) and minimum (at g).
5.1.8 Theorem: Suppose f is a continuous 1-1 mapping of a compact metric space X onto a
metric space Y. Then the inverse mapping £~ defined on ¥ by f=* [:f (:c):} =x(xE€X)is a

continuous mapping of ¥ onto X.

Proof: Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space
¥. To show f~* is continuous, by Theorem 4.3.13, it is enough, if we show that f (V") is open in
¥ for every open set ¥V in X. Let V' be any open set in X. Then V is a closed subset of X. Since
every closed subset of a compact metric space is compact, we have V¥ is a compact subset of X.
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Since f is continuous on X, by Theorem 5.1.2 f(V)° is a compact subset of ¥. Since every
compact subset of a metric space is closed, we have f(V} is closed in ¥. Since f is 1-1 and onto,

FIV) = (J(V))°. This implies (V) is open in ¥. Thus f-! is continuous.

5.1.9 Definition: A one-one, onto function f of a metric space X onto a metric space ¥ is
said to be a homomorphism if both f and f~* are continuous.

5.1.10 Note: By theorem 5.1.8, a one-one, onto continuous function f on a compact
metric space is always a homomorphism.

5.1.11 Definition: Let f be a mapping of a metric space (X, d,) into a metric space [¥.d.).
We say that f is uniformly continuous on X if f or every € = 0 there exists a & = 0 such that
d,(f(p). f(g)) < & for all p and g in X for which d,(p.q) < 4.

5.1.12 Example: Define [ = R g5 f(x) = 2Zx for all x € K, Then [ is uniformly
continuous

For, let € > 0. Take § = =, suppose X, ¥ € & such that lx —yl < 6.

Consider [f(x) — f(¥)| =|2x —2y| =2|x —y| <28 = 1; = €.

Which implies, if |f(x) — f(v)| < € whenever |x — y| < &.
~ f is continuous.

5.1.13 Note: Every uniformly continuous function is continuous but the converse need not to be
true.

Proof: For, suppose f is a uniformly continuous function from a metric space (X, d,) into a
metric space (¥,d,). Let e = 0. Since f is uniformly continuous on ¥; there exists a § = 0
such that &, (f(x), f(¥)) < € whenever d, (x,¥) < §.............. (1)

Letx € X. Let ¥ € X such that d, (x,¥) < &. Then by (1), d,(f(x), f(¥)) < &

Therefore f is continuous at x. Since x € X is arbitrary, we have f is continuous on X. Thus

every uniformly continuous function is continuous. In general the converse is not true. For,
consider the following example.

5.1.14 Example: Define f(0,1) = R as f(x) = % for all x € (0,1). First we show that f is

continuous x

Let € == O and x € (0,1). Choose a § = 0. Such that § < :_:EI

2

Consider & =

= §(1+ex) <ex? ©86 < ex? — Sex

EX
_tex

= § ey — 8x =

xx—8&)

Suppose v € (0,1) such that |[x —y < §. Then x-d < ¥ < x + 4.

ol e, )

x+d ¥ =8
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¥Y—x

Ex

[y—=l &
= — { J—
N N

Consider f(x)— f(yv) = |f +f| =

&

< € (by (1) and (2))

x(x—8)
This shows that f is continuous at x and hence f is continuous on {0,1.
Now we will show that f is not uniformly continuous on (@, 1].

Then for e =1, there exists & =0 such that |[f(x)-f(¥)|=<1 whenever

Since § = 0, there exists a positive integer N such that% < §. Consider

1 1 1 1
-l el <<
N N+1 N(N+1) N

101 11
Now, -,—— € (D,1), such that |:—m| <8

Then by (3),

1 1 . .
f (;) -f (m” < 1, a contradiction.
So, f is not uniformly continuous.
Thus f is a continuous function but not uniformly continuous.

5.1.15 Theorem: Let f be a continuous mapping of a compact metric space (X, d,) into a
metric space (¥, d,). Then f is uniformly continuous on X.

Proof: Given that f is a continuous mapping of a compact metric space X into a metric space
Y.

Let € = 0. Since f is continuous on g € X, for each p € X, there exists a positive number
3,, such that ¢ € X with d,(p.q)

Write V,, = [q CcX|d(pq) < 'ip] Then v, is a neighbourhood of p and hence an open
subset of X )

Now d§ = {Vi,‘ lpEX } is a class of open sets in X. It is dear that d5 is an open cover for ¥.
Since X is compact, there exists Py, Py, ....., P,.X such that X = UL, L/ (1)

Take € = ;min{8, 5, ,....5, }. Then & > 0.

Now let p,g EX be such that d,(p,q) < &. By (1) there exists an integer m with
1<m=n.

such that p € V, . This implies d, (P o) < éf’“.
Also, d,(q,P,,) < d,(p.q) +d,(P,B,) <& +3E“1 =6,

Then d,(f (p).f (B,)) < S and d; (£ (a), F (B,)) < 3.
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Consider d,(f(p). f (a)) < dy (£ (P).f (B,) + do(F(B,). f(2))
{§+§=£

= d,(f(p).flg)) <e.
This shows that f is uniformly continuous on X.
5.1.16 Theorem: Let E be a non-compact set in & . Then
5.1.16.1  There exists a continuous function on E which is not bounded.

5.1.16.2  There exists a continuous and bounded function on £ which has no maximum. If, in
addition, E is bounded, then

5.1.16.3  There exists a continuous function on E which is not uniformly continuous.

Proof: Given that £ is a non-compact subset of I .Since E is a non-compact subset of R
,then either E is bounded and E is not closed or £ is closed and E is not bounded or E is not
closed and not bounded.

Case (i) : Suppose E is bounded and E is not closed. Since E is not closed, there exists a point
X € K such that x, is a limit point of £ and x, € E.

Define f*E = Ras f(x) = ﬁ forall x € E.

Then £ is continuous on E.

Now we will show that f is not bounded. That is, f(E') is not bounded. Since x,, is a limit point
of E, there exists a sequence {x,} of points in E such that x, = xy as 1 — o0, This implies

1
X, — Xpas ™ — w0 and and consequently » sz as 11— oo,
Xn~%p
= 1

Let M = 0. Since — M

— o as 1 — o, there exists a positive integer N such that

XL A X, —

L

for all n = N. This, implies f(x,,) = M for all n = N. Therefore f(E] is not bounded; i.e, f
is not bounded.

w L w

Next we will show that f is not uniformly continuous on X. First, we show that
f(Nz(xy) N E)is not bounded for all 5 = 0: Let 5 = 0 be any real number.

It is clear that N;(x,)NE is bounded. Now we will show that x; is a limit point of
N3(x,) NE. Letr > 0. Puty = min{r, 5}

Consider N, (x,) N (E n N;(x) )Mo} = N, (xp) n{xy} = @
(** x4 1s a limit point of E)
This implies that &7, (x,) N {x}(F N Nz(x,))\{x,} = @ and hence limit point of N3 (x,) N E.

Since x, € E, we have x, € E N N; (x,). So £ N N;(x,) is a bounded set and x is a limit point
of N;(x,) NE such that x, & N;(x,)N E. Therefore by the above argument, f(N;(x,)NE) is
not bounded. Since, 5 = 0isarbitrary f(N;(x,) N F)is not bounded for all 5 = 0.
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Let® = Uand 5= 0. Let X ENz(xg) NE . Thenx € E and |¥ — x4l < § and |[x — x4 = 0
("xg BE)

Take r = & — [x — x,|.

1

Since f(N,.(x,) n E) is not bounded, there exists t € N_.(x,) N E such that | f ()| = ¢ +

[
Now |[t-x,| <=r and, t € E. This implies that [t —x,|+|x—x,/ < § and hence
lx — t|<g

Also |f(t)|-|f(x)| = t. Thus there exist x, t € Esuchthat |x —t| < § and |f(t]|-|f(x)]| = &.
Therefore f is not uniformly continuous on E.

So (a) and (c) are proved.

(b) Define g: E = R as g(x) = ———, forall x € E,

140572 )®
Then g is continuous on E. Also 0 < g(x) < I forall x € E.
This implies g is bounded.
Now, we will show that sup, g g(x] = 1
Clearly, 7 is an upper bound of {g(x)|x € E}.
Now we will show that p = 1.

If possible suppose that p < 1. Then 0 < p < 1. Now we will show that there exists x € E
such that g(x) = p.

1
Take = ‘J;—l, since x, is a limit point of E,x € N_(x,)n E\{x,} # @. Choose

x € N_(x;) N E\{x;,). Then x € E and

1 5 1
lx —x,]l < e= ||——1=‘-*|:c—:cu|'=‘:——1
W E P

1 1
=— =1+ |x—x,l° :m}p
=glx] =p
Thus there exists X € E such that g(x)>p, which is a contradiction to the fact that P is an upper
bound of the set [g(*)| x € E]. Therefore p == 1. Hence SWPuxex g(¥) — 1.
This shows that g has no maximum.
Thus if F is bounded, then (a),(b) and (c) are proved.
Case (i) : Suppose E is not bounded.

(a) Define f:E = R gs f(x) — x for all x € E. Then f is continuous on E and I is not
bounded on E.

So (a) is proved.

as f(x) = x forall *x C E_ Then f is continuous on I and / is not
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(b) Define 1 E = Ras h(x) = " forall x € E.

1+x®
Then h is continuous on E. Since h(x) < 1 for all X € E, k is bounded.
Now we will show that h has no maximum. For this we will show that SUP.eg h(x) = 1,

Since h(x) = 1 for all ¥ € E, we have 1 is an upper bound of {i(x) | x € E]. Let p be any
upper bound of {h(x) | x € E}. If possible suppose thatp << 1. Then0 < p < 1,

Now we will show that there exists * € E show that h(x) > p.
Since ¥ is not bounded, there exists X & E such that
4 AL S (1—-p)x*>p
1—-p 1-p
\
Sxi—pxi>p=2xt>=ptpxt=p(1+x?)
= ﬁ =p = h(x) = p, which is a contradiction to the fact that p is an upper bound of
{h(x)|x € E}.
Therefore p < 1 and hence sup, g ilx) =1
Thus h is no maximum.
Note: (c) Would be false if boundedness were omitted from the hypothesis.
5.1.17 Example: Let E be the set of all integers. Then E is a non-compact subset of & which

is not bounded. Then every function defined on E is uniformly continuous. For, let f be any
function from £ into K. Let € = 0. Choose § such that @ < § < 1. Suppose x.¥ € E such

that |x —y| <&, Then x — y. This implies |f(x)-f(»)| — 0 < 5. Hence f is uniformly
continuous on E.

5.1.18 Examples :

(Letf(x) ==,0<x, < L0<x <1

Lete = i , then there existsa 5, = 0
Ixn

1
lx — 2, < 8, = |]x] =[xl = |x — x] ‘5£|3€| > |yl

e PP
Now x xg xxg {Cl.r:l [lxl |ID|j{E
If 1t ﬁ

X xg .

If § < min ( :’31,%5 ), then £ is a continuous on (0, 1).

We will show f is not uniformly continuous on (0,1) given €= 1. Let § =0 be as in
uniform continuity of f. Choose 1 such that i < 8,

1 1 1 1
— <—< dand ———|=|
ntl " ntl n

1

- = §
nin+1)

1
<3
n
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|f(i)—f(£)|=|n+1—n| =1>c

atl n

= f is not uniformly continuous on (0,1).
@) let f(x) =sin (1), (0 < x < 1)

Let 0 =< =<1 let & > 0 be as in uniform continuous. Choose ‘“+ve’ integer 1 and 72 such
that

Asbefore|x, —x,| < & and |If(x)— flx,)|=|1—-0[=1=¢€
= f is not uniformly continuous on (@,1].
@) letf(x)=_0<a<z<a

If |x — x,| < ea” and let § = ea?

Then f is uniformly continuous on { a, ag).

5.2 CONTINUITY AND CONNECTEDNESS

5.2.1 Theorem: If f is a continuous mapping of a metric space X into a metric space ¥ a if
E is a connected subset of X, then f{E) is connected.

Proof: Suppose f is a continuous mapping of a metric space X into a metric space ¥ and is
a connected subset of X.

Claim: f(E) is a connected subset of ¥

If possible suppose that f( E') is not connected. Then there exist non-empty subsets 4 and B of ¥
such that that f(E) =AUBandANB =0andANE =0

G=EnfA4)andH =En f(5)

G+ @and H + 0

Since 4 and B are non-empty, we have. Now consider

GUH=[Enf Y AVI[En fF1(B)]
=Enfau s
=EnfYAuB)]I=E

~E=GUH

Now, we will show that G € f~*(4 ]

letxeEG=x€Enf (d)=>x€Fand f(x) €A

— [(x)E A= x € [(A) Therefore 6 = ['(4)

Since A isaclosed set in ¥ and since f is continuous, by corollary4.3.13, f 1(4) is a closed set in
X.

Since f7(4) is a closed set containing ¢ and G is the smallest closed set containing G
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we have G S F71(4)
This implies f(G) S (4 ]
Next we will show that f(H) = B
Lety € f(H). Theny = f(x) forsome x € H.
xEH=x€EEandx€ f}(B)=f(x)EB=vEBR.
So f(H) € B.
Lety EB=y Ef(E)=Y = f(x)forsome x € E.
—x€Ef Y (B)andx€EE=x €En fB)
=x€EH=f(x)Ef(H)=y ef(H)
So B © f(H) and hence f(H) = R.
Next, we will show that 6 5 = @.
If possible suppose that 5 n g = p- Thenchooseand x € G n H
=xyxeEgandxEH =x€G and f(x) € f(H) =B.
= f(x) e f(5)and f(x) € B = f(x) e Aandf(x) € B
(- fle)ca
f(x) e ANEB # @, a contradiction.
SO GnH=0
Similarly, we can show that G n § = @
Therefore E =G U Hsuchthat fn g =pand6nH =0

Thus E is the union of two separated sets; which is a contradiction to the fact that E is
connected. This contradiction arises due to our supposition f{E) is not connected. Hence
f(E)is connected.

5.2.2 Theorem: Let f be a real continuous function on the closed interval [a,b]. If
f(a) < f(b) and if ¢ is a number such that fla) < ¢ < f (k). then there exists a point
x € (a. b) such that f(x) = ¢,

Proof: Given that f is a continuous real function on the closed interval [a, b].
Suppose, f(a) < f(b)and cisanumbersuchthat f(a) < ¢ < f(b).

By a known theorem, |a, &] is connected. Since f is continuous, by Theorem 5.2.1, f|a, b] is
connected subset of RE. Then by a known theorem, f[a,b] is an interval. Since
fla) < c<f(b) and f(a),f(b) € fla,b]. we have ¢ € fla,b] = ¢ = f{x) for some
x € [a, b]

5.2.3 Note: Theorem 5.2.2 holds if f{a) = f(b).

5.2.4 Definition: If f is defined on E, then the set {(x, f(x))|x € E} is called the graph of
f.

5.2.5 Problem: If f is a real valued function defined on a set E of real numbers and if E is
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compact, then show that f is continuous on E if and only if the graph of f is compact.

Solution: Suppose f is a real valued function defined on a set E of real numbers and also
suppose that E is compact.

Claim: f is continuous on E if and only if the graph of f is compact.

Suppose f is continuous on E. Then by Theorem 5.1.2. f(E) is compact. Since the product of a
non-empty family of compact sets is compact. We have EX f(E) is compact. Since every
closed subset of a compact set is compact to show the graph of f is compact, it is enough if
we show that the graph of f is a closed subset of EXf (E).

Write G = {(x, f(x)]|x € E}. Then G is the graph of f Let (x,y) € EXf(E) be a limit point
of G. Then there exist a sequence {(x,.f(x,))] of points in & such that
lim, (x,,f(x,)) = (x,¥). This implies lim, f(x,] ==x and lim, f(x,) = Since f is
continuous and lim, x, = x. we have lim, f(x,) = f(x). Since the limit of a sequence is
unique, we have f(x) = v.

Therefore (x,¥) = (x, f(x)) € G. This shows that & contains all of its limit points and hence
G is a closed subset of EXf(E). Consequently G is compact. That is, the graph of f is
compact.

Conversely suppose that the graph G of f is compact.
We will show that f is continuous.
Since G is compact, by a known result, & is closed and bounded, Let x € E.

Let {x,} be a sequence of points in E such that {x,} converges to x, Now
{(x,.f(x,))]isasequence of pointsin G. Since & is bounded, {(x,,.f (x,,)]}is bounded.

This implies that {f(x,)} is bounded. Then lim sup f(x,) and lim inf f{x,) exist. So let
% = lim sup f(x,,). Then there exists a sub sequence {f (2, )} of {f(x,)} such that {f (%, )]

converges to .

Since {x,, }is a subsequence of {x,} and {x,} converges to x, we have {x, } converges
to x Then {¥ .a}=lim, (:x”;‘_, Foen, )) . Now lim, (xw f (%, }) is a sequence of points
in G such that (* @) = lim, (x”k,f[x”k))_ This implies that (X: @) is a limit point of G.
Since G is closed. (x: @) €6 and hence [x &) = (x, fx)).

Therefore, (x, f(x]) = lim, sup{x,_ ., f(x,, )}

Similarly we can show that (% £(x)) = lim, inf{x, . f(x,. )]}

Therefore, [x,f (x )) = lim,, s:r,p{x”k, f [x”kjl}.

Consequently lim, f(x) = f(x). So f is continuous at x.

Since x € E is arbitrary, | is continuous on E. Thus f is continuous on E if and only if the
graph of f is compact.
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5.2.6 Problem: Let 1= [0,1] be the closed unit interval. Suppose f is a continuous
mapping of I into I. Prove that f(x) = x for at least one x € I.

Solution: Given that I = [0, 1] be the closed unit interval and f is a continuous mapping
of I into 1.

Define g: I = Ras g(x) = x — f(x) for all x € [0,1]

Since f is a continuous function, we have g is also a continuous function.

Consider g(0) — 0 — f(0) cpandg(1) —1—f(1) =0 (=0 = f(0)) and f(1) < 1.
+ g(0)= 0 <g(1)

If g(0)=0,then 0 —f(0)=0 = f(0) =0.

Ifg(1)=0, then 1 — f(1) =0 = f(0) =1.

Suppose g(0) < 0 < g(1). Then, by known theorem, there exists x € (0,1] such that
g(x) = 0. This implies x- f(x) = 0 and hence f(x) = x.

Thus, in any case, f{x) = x for some x € I.

5.277 Problem: Show that a uniformly continuous function of a uniformly
continuous function is uniformly continuous.

Solution: Let {(X,d.),(Y,d,) and (Z,d;)} be metric spaces. Suppose f:X — ¥ and
g: ¥ — Z are uniformly continuous functions.

Claim: go f: X — Z is uniformly continuous.

Let €= 0. Since g:¥V — I is uniformly continuous there exists a 7= 0 such that
d,(e(v,). e(v)) < € whenever d, (v, v.) <n.......... (1)

Since f:X —Y is uniformly continuous there exists a & =0 such that
d,(g(x,).g(v)) <n whenever dy(x.,x,) <&

Suppose x,,%; € X such that d; (x,,x,) < ... .. )
Then from (1) and (2) d3(g e fx;), gof(x,)) <€
Therefore g« [ X — Z is uniformly continuous.

5.2.8 Problem: If E is a non-empty subset of a metric space (X,d) define the distance
from x € X to E by

P.(x)= ;Iég a(x,z)
5.2.8.1 Prove that P(x) = 0 ifand only if x € E

5.2.8.2 Prove that P. is a uniformly continuous function on x, by showing that
[Pz (x)— Pz(y)| < dix,y) forall x,y € X.

Solution: Suppose E is a non-empty subset of a metric space (X, d).
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Define Pc(x) = inf__; d(x,z) forall x € X.
(a) To show Pz(x) = Cifand only if x € E
Suppose x € E
Now d(x,x) =0
If x€ E.Then 0 < Po(x] <d(x,x)=0=Pg(x)=0.

Suppose x € E. Since x € E, x is a limit point of E. Then there exists a sequence {x} of

points in E such that lim__,_ x, = x

Let € = 0. Since lim
alln = N.

x, = x. There exists a positive integer N such that d(x,x) < & for

T =00

Now 0 < Pz(x) < d(x

=0=2Pg(x)<e

wX) foralln =N
Since € = 0 is arbitrary, We have Pz(x) = 0.
Thus if x € E it, then P(x) =0

Conversely suppose that Pz(x) = 0.

Let = = D. Since P;(x) = 0 there exists ¥ € E such that d(x,y) < §. This implies
¥ € Ng(x).

This shows that N_(x) N E # @ forany ¢ > 0 and hence x € E.
Thus x € E ifand only if P, (x) = 0.

(b) To shows P is uniformly continuous on X.

Let € = 0. Take 5 = ¢. Suppose x, ¥ € X such that d[x, V) < &,
Consider P;(x) < d(x,z) forallz € E.
<d(x,y)+d(yz)forallz€ E.

= P.(x)-d(x,y) < (y,z)forallz € E.

= P.(x) < d(x,y)isalowerbound of {d(v,z)| z€ E}.

= Pe(x)-d(x,v) = Pe(v) = Pe(x)-Pe(y) = d(x,y) < § = € Similarly
Po(v)-Pg(x) <€

Therefore |P-(x) — P-(v)| < € whenever d(x,¥) < &.

Hence, Pg is uniformly continuous on X.

Short Answer Questions

1. When do you say that a mapping f of a metric space X into R"is bounded?

2.  Define a homomorphism of a metric space Into another metric space.
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3. When do you say that a function f of a metric space X into a metric space ¥ is uniformly
continuous?

4.  Is every uniformly continuous function a continuous function? Justify your
answer.

5.  Isevery continuous function a uniformly continuous function? Justify your
answer.

Model Examination Questions

1.  If f is a continuous mapping of a compact metric space X into a metric space ¥ then show
that f() is compact. (Equivalently show that continuous image of a compact metric
space is compact).

2. Show that a continuous 1-1 mapping of a compact metric space X onto a metric space

¥ is a homomorphism.

3.  Show that a continuous mapping of a compact metric space X into a metric space
¥ is uniformly continuous.

4. Let E be a non-compact set in K. Then show that
(i) There exists a continuous function on E which is not bounded.
(ii) There exists a continuous and bounded function on E which has no maximum.

(iii) If, in addition, E is bounded, then show that there exists a continuous function on E
which is not uniformly continuous.

5.  Show that continuous image of a connected set is connected.
6.  Let f be areal continuous function on the closed interval [a, b). If f(g) < f(b) and if

c is a number. such that f{a) < ¢ < f(b]. then show that there exists a point
x€e(a, b) such that f(X) = c.

7.  If f is a real valued function defined on a set E of real numbers and if E is compact,
then show that f is continuous on E if and only if the graph of f is compact.

Exercises

1. Let f be a real uniformly continuous function on the bounded set E in K. Prove that f
is bounded on E. Show that the conclusion is false if boundedness of E is omitted
from the hypothesis.

2.  Suppose f is a uniformly continuous mapping of a metric X into a metric space Y.
Then prove that {f{x,;)} is a Cauchy sequence in ¥ for every Cauchy sequence {x ;}
in X,

3.  Let E be a dense subset of a metric space X and let f be a, uniformly continuous real function
defined on E. Prove that! has a continuous extension from E to X.

4.  Call a mapping f of a metric space X into a metric space ¥ open if f(V') is an open
set in ¥ whenever V" is an open set in Prove that every continuous open mapping of is
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IR monotonic.

Answers to Short Answer Questions
For 1, see definition 5.1.1.
For 2, see definition 5.1.9
For 3, see definition 5.1.11

For 4, see note 5.1.11
For 5, see note 5.1.11

5.3 SUMMARY:

This lesson provides an in-depth examination of continuity, compactness, and
connectedness, crucial concepts in topology. Learners will engage with definitions,
theorem proofs, and corollaries to solidify their understanding. Practice problems will
help learners develop problem-solving skills, enabling them to apply these concepts to
mathematical and real-world problems.

5.4 TECHNICAL TERMS:

R/
0.0

Arbitrary

Argument

Bounded
Boundedness

Closed set

Compact metric space
Continuous mapping
Homomorphism
Integer

Limit point

Lower bound
Maximum
Minimum
Neighbourhood
Non-compact set
Open set

Real number
Uniform

Upper bound

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

®.
SR X

o
*

®. ®. O o 7 7 7 ®
SO XS X X X I X I X B X X4

o
*

5.5 SELF ASSESSMENT QUESTIONS:

1. Define a homomorphism of a metric space Into another metric space.
2. Is every uniformly continuous function a continuous function? Justify your answer.



Analysis — I 5.15 Continuity, Compactness...

98]

Is every continuous function a uniformly continuous function? Justify your answer.
4. Show that a continuous 1-1 mapping of a compact metric space £ onto a metric space Y is

a homomorphism.
5. Show that continuous image of a connected set is connected.
6. Suppose f is a uniformly continuous mapping of a metric X into a metric space ¥. Then

prove that {f (x,,)} is a Cauchy sequence in ¥ for every Cauchy sequence { x ,;} in X.

7. Call a mapping f of a metric space X into a metric space ¥ open if f(V") is an open set in
¥ whenever V is an open set in Prove that every continuous open mapping of is R
monotonic.

5.6 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hilllnternational
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition, 1985.

Prof. B. Satyanarayana



LESSON-6
DISCONTINUITIES OF REAL FUNCTIONS

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To determine the discontinuity of real functions at a point, and investigate types and
properties of discontinuities.

% To analyze and identify properties of discontinuous functions that develops
mathematical reasoning and problem solving skills.

STRUCTUE:

6.0 INTRODUCTION

6.1 DISCONTINUITIES

6.2 MONOTONIC FUNCTIONS

6.3 INFINITE LIMITS AND LIMITS AT INFINITY

6.4 SOME MORE EXAMPLES WITH SOLUTIONS
6.5 SUMMARY

6.6 TECHNICAL TERMS

6.7 SELF ASSESSMENT QUESTIONS

6.8 SUGGESTED READINGS

6.0 INTRODUCTION:

Throughout this lesson f(x) denotes a real valued function of real variable. In this
lesson the discontinuity of first kind and the discontinuity of secondkind are defined. It is
proved that if f'is a monotonically increasing function defined on (a, b}, then f{x+) and

f(x-) exist at every point x of (@, b). It is also proved that if f is monotonic on (a, b},
then the set of points at which f is discontinuous is at most countable.

6.1 DISCONTINUITIES:

6.1.1 Definition: Let f be a function from a metric space X into a metric space ¥.If f is

not Continuous at a point x € X, then we say that f is discontinuous at x .

6.1.2  Definition: Let f be a real valued function defined on (a,b). Let x be a point
such that <x = b . A number g is called the right hand limit of f at x

iff(t.) = q as n— oo for all sequences {t,]in (x,b) such that £, & x and we
write f(x +) = g.

6.1.3  Definition: Let £ be a real valued function defined on (a,b). Let x be a point
such that <x < b . A number p is called the left hand limit of f at x
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iff(t.) = p as n—= o for all sequences {f.} in (a,x) such that £, = ¥ and we

write f(x —) =p.
6.1.4 Note: If * € (a, b),then lim__,, f(t) exists if and only if
flx+) = fle—) =lm, .. f(2).

6.1.5  Definition: Let f be a real valued function defined on (a,b). If f is
discontinuous at a point X & {a,b]) and if f(x +) and f(x —)exist, then f is said to
have a discontinuity of the first kind or a simple discontinuity at x. In this caseeither
f(x+) = f(x-) in which case the value of f(x) is immaterial or

flx+1 = flx-) » f(x).

6.1.6  Definition: Let £ be a real valued function defined on (a, b). If £ is discontinuous

at = € (a,b) and if either f(x+) or f(x—) does not then f is said to have
discontinuity of second kind.

6.2 MONOTONIC FUNCTIONS:

6.2.1 Definition: Let f be a real valued function defined on (@, b). Then f is said to be
monotonically increasing on (a,b) if @ < x < v < b implies that f(x] = f(v) andf
is, said to be monotonically decreasing on (a,b). if @ < x <y < b implies that

fly) < f(x). f is said to be a monotonic function if it is either monotonically
increasing or monotonically decreasing.

6.2.2 Theorem: Let f be a monotonically increasing function defined on (a, b). Then

f(x+) and f(x-) exist at every point x of (a, b). More precisely,
Sup f(t) = f(x—) £ f(x) = f(x+) = inff(1)

Furthermore, if u <x < ¥ < b then f(x+) = fly—)
Proof: Let f be a monotonically increasing function defined on (a, b).

Let x € (a, b). Since f is monotonically increasing, we have f(t) < f(x) for all t such
that @ < t < x. This implies{f(t)/a < ¢t < x} is bounded above by f(x). Since R has least
upper bound property, {f(t}/a </t < x} has a least upper bound, say 4. Then 4 < f(x).

Now we will show that A — f(x—]).

Lete = 0. Then A- €is not an upper bound of {f(t)/a < t < x}. This implies there
exists t, such that a < t; < x and

A-e < f(tg) S Aveerwn (1)
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Taked = x —t,. Then § = 0. Suppose t; <<t <x . Since f is monotonically
increasing, we have

fltg) Sf(E) SAw o (2)

From(I) and (2),we have A—¢e < f(t) << A+ ewhenever x —4& <t < x. This
implies |f(t) —A4l < e for all ¢ such that x—& <t<x and hence
lim, . f(t) = A. Thus f(x —) = A. Thatis, f(x —) = supf(t].

Next, we will show that f(x+) = inf f(t)

Since f is monotonically increasing, we have f(x)= f(¢) for all ¢ such that
x <<t < b This implies{f(t)/x < t < b} is bounded below by f(x). Since ® has
greatest lower bound property, {f(t)/x < t < b} has a greatest lower bound, say A.
Then f(x) < A

Now we will show that 4 = f(x+).

Lete == 0, Then A + €is not a lower bound of [f(t)/x < t < b}, This implies there
exists t, such that ¥ < t; < b and

A= f(ty) S A+ € (3)

Taked = t, —x. Then & = 0. Suppose x <t <1t, . Since f is monotonically
increasing, we have

A F(E) < fltg) rmn o (4)

From(3) and (4),we have A —e < f(t) < A+ € whenever x < t < x4+ 4. This
implies |f(t) — 4] =& for all ¢ such that x<t<x+4& and hence
lim,_ . f(t) = A.Thus f(x +) = A Thatis, f(x +) = inff(t).
Hence,
Sup f(t) = f(x ) =f(x) = f(x |) = inff(2).
Next we will show that f{x +) = f—)ifu<x <y <D
Suppose a < x = y = b. Then by the above
f(x+) =inf f(t) =inf f(t) oo (5)
f(y=) = sup F(£) = sup F(£) e (6)
From(5) and (6),we have f(x +) < inf f(t) < sup f(t) < f(¥v—)

Thusif @ < x < y < b, then f(x +) < f(v —).
6.2.3 Note: The above theorem also holds for monotonically decreasing functions.

6.2.4 Corollary: Monotonic functions have no discontinuities of the secondkind.
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Proof: Let f be a monotonic function defined on (a, b). Then by theorem 6.2.2 [If f
is monotonically increasing) and by note 6.2.3 (if f is monotonically decreasing).

f(x+) and f(x-)exist at every point x € (a, b). So f has no discontinuities of second
kind.

6.2.5 Theorem: Let f be a monotonic on {a, b).Then the set of points of (a, b) atwhich f
is discontinuous is atmost countable.

Proof: Given that f'is monotonic on (&, b). Suppose f is monotonically increasing. Let
E be the set of points at which f is discontinuous. If E is empty or finite, then E is
atmost countable.

Suppose E is not finite. In this case we will show that E is countable.

Let x € E. Then f is discontinuous at x. Since f is monotonic, by corollary 6.2.4,
F has discontinuities of first kind. This implies fF(x+).f(x-) exist and
f(x=)< f(x+) .Then ~choose a rational number r(x) such that
F(x- ) = r(x) = f(x+)Thusif x € L, then there exist a rational number r(x) such
that f{x—) < r(x) < f(x+).

Write T = (x)/x € E} Then T € Q, the set of rational numbers. Since @ is
countable, T is also countable ..

Now define f: E = T as f(x)=r(x) forall x € E.

Then clearly f is a function.

Suppose x;,%, £ E such that x; # x,. Assume x; < x,
Then by theorem 4.1.8, f(¥1 ) = x; — This implies that

flxg-) < rlxg) < flxy ) € (x2-) < r(xg) < fxa+)
- r(¥1) #F r(*z) and hence f(*1) F f(x;)
Thus x; # x; implies that f(x;) # f(x3)

Consequently f is one — one.

Clearly f is onto
Therefore f: E = T is a bijection and hence E is countable(-.- T is countable).

So E is atmost countable.

Now if f is a monotonically decreasing function, then - f is a monotonically

increasing function, then the set of discontinuities of — f are the same, we have the

set of discontinuities of f is atmost countable. Thus the set of discontinuities of a
monotonic function is atmost countable.
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6.3 INFINITE LIMITS AND LIMITS at INFINITY

6.3.1

6.3.2

6.3.3

Definition: For any real ¢, the set of real numbers x such that x = ¢ is calleda

neighborhood of 4+ and is written (¢, +2¢ ). For any real ¢, the set of real numbers x

such that x < ¢ s called a neighborhood of - o and is written (- oo, €).

Definition: Let ¢ be a real function defined on E. We say that f(t) & Adast = x
where 4 and x are in the extended real number system, if for every neighborhood I
of 4 there is a neighborhood ¥ of x such that E N ¥ is non- empty and such that
fltyeEUforallte EN V.t # x

Theorem: litn, . /(L) — A where 4 and x are extended real numbers if and
only if lim,__ f(t,) = A for all sequences {t,} in E such that ¢, #x and

t, =X
Proof: Suppose lim, . f(t) = 4

Let {¢,,} be any sequence in E such that {, = xand ¢, — x.

Let Ube any neighborhood of 4. Since lim, _,, f(t) = A4, there exists a neighborhood
asuchthat VN E #= @and f(t) eUforallt € VN Eand t # x. Since, t,, = x

there exists a positive integer N such that t, € V for all n = N. This implies
f(t,) €U forall n = N and hence lim,, __. f(t,] = A.

Conversely suppose that lim,, .. f(t,) = A for all sequences {t,,} in E such that
t, =xandt, = x

If possible suppose that lim, ., . f(t) = A there exists a neighborhood U of A such
that for every neighborhood V of there exists a point ¢ & E for which f(t) & U and
tel

Case (i): Suppose = + . Let n be a positive integer. Now (n, oo ) is aneighborhood
of oz . Then their exists t,, € E such that f(t,) € Uand t; € (n,c0 ). Therefore {z, }
isasequence of pointsin £ suchthatt, — oo, t, # oo and

> 'n
Im, . f(t,) 4.

Case(ii): Suppose x = — oo, Let n be a positive integer. Now (—oo, —n, )isa
neighborhood of — co . Then their exists £,, € E such that f(t,.) & Uand

t, € (—ow,—n). Therefore {t, } isasequence ofpointsin E suchthatt, — oo, t, # —o
and

Im, .. f(t,) =A.

Case (iii): Suppose x is a real number. Let n be any positive integer.
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(x - %,x + ?l—!) is a neighborhood of x. Then their exists t,, € E such that f(t,)) € U
1 1 . o

and t, € (x ——x +;). Therefore {t} is a sequence of points in E such that

t, »xasn — o, t, #xandlim, _ f(t,) = A

Thus in any case there exists a sequence {#} of points in £ such that t,, = » and
Im, . f(t,) = A which is a contradiction to our supposition. This contradiction
arises due to our assumption lim, . f(t) # A. Hence lim, . f(t) = A.

6.3.4 Problem: Define f: (0,2) = Ras f(x) =1if 0= x = land
f(x) = 2if 1 < x < 2. Then show that f is continuous at every point x = 1 and f

has a discontinuity of first kind at x = 1.

Solution: First we show that f is continuous at every x € (0,2} such that * # 1.
Let x € (0,2) such that * # 1 and let == 0.
Then0 << x << lorl < x< 2,
Suppose 0 < x < 1. Choose suchthat0 < § < min{x, 1-x}.
Then0 < x-f<x<x+£<1
Suppose ¥ € (0,2) such that [x — ¥| <& .Thenx-§ =¥ < x +§
This implies 0 < y < 1.
consider |f(x)-f(v)| =|1-1| =0<e.
So, in this case, f is continuous at .
Suppose 1 < x < 2. Choose § such that 0 < § < min{x-1,2-x}
Thenl<x-d<x<x+4§<2
Suppose ¥ € (0,2) such that [x-y| < § . Thenx-§ <y < x+§
This implies 1 << v << 2
Consider [f(x)-f(v)| = |2-2| = 0<e
So, in this case also f is continuous at .

Thus f is continuous at every point x € (0,2) such that ¥ # 1. Next we will showthat
} is discontinuous at * = 1.

Let {t,} be any sequence in (1,2) such that t,, = 1.

Then f(1+4) = lim, ., f(t,) =lim,_,..2=2.S0 f(14) =2
Let {t,} be any sequence in (0.1) such that t,, = 1.

Then £(1 —) = lim,___ f(t,) =Tm,___1=1.S0 f(1—) = 1.
Therefore f(1 +) and f(1 —) existand f(14+) = F(1—..
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So f has a discontinuity of first kind at x = 1.

6.3.5  Problem: Define f: B 5 R as f(x) = 1 ifx is a rational number and f(x)=0ifx
is a irrational numbers. Then show that f has a discontinuity of second kindat every
point x £ B
Solution: First we show that f is discontinuous at every point x € R,
Letx Emand let 0 < €< 1,
Let § be any real number such that § = 0.

Case (i) : Suppose x is a rational number.

Choose an irrational number ¥ suchthat - § < y < x4+ § .
Then |x—v| < §.

Consider |f(x)-f(¥)| = [1-0| = 1>¢€

Case (ii): Suppose x is an irrational number.

Choose a rational number v suchthat —§ < v < x4+ 4.
Then |x—v| =< §.

Consider|f(x)-f(v)| = [1-0| = 1> ¢

Thus in any case, for 0 < € < 1, for any 5 = 0, there exists ¥ € (x=§.,x 1§ ) such
that |f(x)-f ()] > €

This shows that f is discontinuous at x.

Hence f is discontinuous at every point x € R
Next, we will show that f has a discontinuity of second kind at every point
XeR

Let x £ R, For each positive integer n, consider 'ixj x4+ l)

Choose a rational number 4. in (x X+ 1). Then {,. } is a sequence of rational numbers such
that T, — _'X.'I
. S 1
Since, lim_ (x + _) =xandx <g, <=
Consider lim f (1;,'] =liml =1,

So {,. }is a sequence of rational numbers in (y o) such that ;. — x and

Iim f(; ) = 1. Let {; }be asequence of irrational numbers such that x < ¢ < x = i

Then {, }be a sequence of irrational numbers in (y gn)suchthat ¢ xasn — o and
lim f(sn]' = 11'11_1|ﬂ =10
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Thus ;- } and [ ] are two different sequences in (; o) such that,. — xand ; — xbut
lim f(;n] =021=lim f":*.r]

This shows that f(x+] does not exist and f has a discontinuity of second kind at x. Hence f
has a discontinuity of second kind at every point.

6.3.6 Problem: Define f:m — B as f(x)=0 if x is irrational and f(x)=0 if x is
irrational. Then show that f is continuous at x = 0 and has a discontinuity of the
second kind at every other point in .

Solution: First we show that f is continuous at x = 0
Let € = 0. Taked = ¢
Suppose ¥ € B suchthat [¥ —0| <& = |y| <e
Consider [f(v)-f(0)| = |f(¥)-0] = |f(¥)| = |¥]| or 0 according as ¥ is rational
or ¥ is irrational. This implies that |f{3)- f(0)] < e.
Therefore f is continuous at x = 0.
Suppose ¥ € B such that x + 0.

.. . . i
For each positive integer 1 consider 'ax: x4 L)

Choose a rational number ;. in (xj X+ 1). Then {,. } is a sequence of rational numbers such
that - — x,

Consider Jim f (15 )= limr, ==

For each E)égitive inteéé; n

Choose an irrational number ;_in (xj X+ _l) Then {_ }is a sequence of irrational numbers
such that ¢ — x,

and }il‘!ﬂl‘_f{.sn] = 'linﬂl'ﬂ =0

Thus {,. } and {. ] are two different sequences in (y o) such that,. — xand g — xbut
}ilTlf(Sn) =0zxx= _lin},f('-’:-.)'

This shows that f{x+] does not exist and f has a discontinuity of second kind at x. Hence f

has a discontinuity of second kind at every point x = 0.

6.4 SOME MORE EXAMPLES WITH SOLUTIONS:

6.4.1 Example: Call a mapping from X into ¥ open if f( ") is an open set in ¥ whenever ¥ is

an open set in X. Prove that every continuous open mapping of R into R is monotonic.
Solution: Suppose f is continuous and not monotonic, say there exist points a << b < ¢

with f(a) < f(b) and f(c) < f(b).
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Then the maximum value of f on the closed interval [g, c] is assumed at appoint u in the

open interval (a, c).

If there is also a point v in the open interval {a, ¢) where f assumes its minimum value

on [a,c], then fla, c) — [Flv), Flu)].
If no such point v exists, then f(a,c) = (d, f(u)), where d = min(f (a), f (c))

In either case, the image of (a. c) is not open.

6.4.2 Example: Let [x] denote the largest integer contained in x, that is [x] is the integer
such that x — 1 < [x] < x; and let (x) = x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?

Solution: The two functions have the same discontinuities,

Since each can be written as the difference of the continuous function f{x) = x and the

other function.

Now the function [x] is constant on each open interval (k, k + 1];

Hence its only possible discontinuities are the integers.

These are of course real discontinuities, since if € = 1, there is no § = 0 such that
[[x] —[k]| <€ whenever |x — k| < &.

6.4.3 Example: Let £ be a real function defined on (&, k). Prove that the set of points at
which f has a simple discontinuity is at most countable. Hint : Let E be the set on

which f(x —) < f(x +). With each point x of E associate a triple (p, g, r) of rational
numbers such that

@ flx—)<p<flx+)

(b) a < g <t < x implies f(t) < p,

(¢) x =t <r < bimplies f(t) = p.

The set of such triples is countable. Show that each triple is associated with at most one
point of E. Deal similarly with the other possible types of simple discontinuities.
Solution: The existence of three such rational numbers (p, g, ) for each simple

discontinuity of this type follows from the n assumption f(x —) < f(x +), and the
definition of f(x—) and f(x +).



Centre for Distance Education 6.10 Acharya Nagarjuna University

We need to show that a given triple (p, g, r) cannot be associated with any other

discontinuity of this type.

To that end suppose ¥ = x and f(v —) < f(v +).

If we do not have f(y —) < p < f(+ +), then the triple chosen for y will differ from
(p. q,7) in the first element.

Hence suppose fiyv —) <p < f(v +).

In this case we definitely cannot have r = ¥, since there are points t € (x,¥) such that

f(t) < p (if there weren’t, we would have f(v —) = p.

We have thus shown that shown that the set of points x & (a, &) at which
f(x—]) < f(x+) is at most countable.

The proof that the set of points at which f(x —) == ({x +) is at most countable is, of

course, nearly identical.

Now consider the set of points x at which lim, _, . ft) exists, but is not equal to f(x).

t—x

For each point x € (a, b) such that lim, _, . f(t) < f(x), we take a triple (p.q.7) of

rational numbers such that

(a) lim, .. f(t) <p < f(x)
b)) a<sg=<t<xorx=t<r < bimplies f(t) < p.

As before, if v = x and lim, _, . f(t) < f(y), the triple associated with ¥ will be

£y

different from that associated with x.

Foreven if lim, , , f(t) < p < f(y), we cannot have r > y, since f(¥] > p and

X =y

The proof that the set of points x € (a, b) at which lim,_, . f(t) = f(x) is countable is

t—x

nearly identical.

Hence, the number of points in [a, b] at which f has a discontinuity of first kind is

countable.
Short Answer Questions

1. When do you say that a real valued function f defined on (a.b) has a
discontinuity of first kind?
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When do you say that areal valued function f defined on (a,b) has a
discontinuity of second kind?
Determine f: B — Ras f(x)=x if r is rational and f(x) = 0. If x is irrational.

Then show that f is continuous af x = 0.

Model Examination Questions
Let f be a monotonically increasing function defined on (a, b). Then showthat f(x +)
and f(x-) exist at every point x of (= ,h ). More precisely,
Let f be monotonic on (a,b). Then show that

supf(t) = f(x—) < f(x) < f(x —) = inf f(¢t) the set of points of (a, b) at which f
is discontinuous is atmost countable.

Define f:(0,2) > Ras f(+) =1 if 0 « x < 1 and £(,) = 2 if 1 = x < 2 Then show
that f is continuous at every point x - 1 and f has a discontinuity of first kind at x — 1
Define f'®m — R as f(x)=1 if x is rational and f{x) = 0if x is irrational. Then

show that f has a discontinuity of second kind at every point X £ [

Exercises

Suppose X, ¥ and Z are metric spaces and ¥ is compact. Let f map X into¥; let g be a
continuous one-to-one mapping of ¥ into Z, and put h{x) = g (f(x))for all x € X
Prove that f is uniformly continuous if h is uniformly continuous.

Answers to Short Answer Questions

1. For 1, see definition 6.1.5
2. For 2, see definition 6.1.6
3. For 3, see definition 6.2.1

6.5 SUMMARY:

This lesson focuses on understanding and analyzing discontinuities of real functions at
a point. Learners will explore types and properties of discontinuities, developing
mathematical reasoning and problem-solving skills. The Lesson Highlights Introduction
to discontinuities of real functions, Definitions and proofs of relevant theorems, Solved
problems and examples to illustrate key concepts, Analysis of properties of
discontinuous functions.

6.6 TECHNICAL TERMS:

R/
0‘0

R/
0‘0

Atmost countable
Bijection
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X3

S

Discontinuity
Monotonically decreasing
Monotonically increasing
Neighborhood

Real variable

X3

S

X3

S

X3

S

X3

S

6.7 SELF ASSESSMENT QUESTIONS:

1. Let f be monotonic on (a, b). Then show that

supf(t) = flx7) = f(x) = f(x~) = inf f(t) the set of points of (a, b) at which f
1s discontinuous is atmost countable

2. When do you say that a real valued function f defined on (a.h) has a
discontinuity of first kind ?

3. When do you say that a real valued function f defined on (a,b) has a
discontinuity of second kind ?

4. Let [x] denote the largest integer contained in x, that is [x] is the integer such that
x—1<[x]<x; and let (x) =x —[x] denote the fractional part of x. What

discontinuities do the functions [x] and (x) have ?

6.8 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2™ Edition, 1985.

Prof. B. Satyanarayana



LESSON -7
DERIVATIVE OF REAL FUNCTIONS

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To define and explain derivatives of real functions and apply derivatives to solve
optimizations skills.
% To develop problem solving skills using derivatives.

STRUTURE:

7.1 INTRODUCTION

7.2 THE CHAIN RULE

7.3 SOME MORE EXAMPLES WITH SOLUTIONS
7.4 SUMMARY

7.5 TECHNICAL TERMS

7.6 SELF ASSESSMENT QUESTIONS

7.7 SUGGESTED READINGS

7.1 : INTRODUCTION:

1. Derivative at a point: Let I denotes the open interval ]Ja,b[ in E and let x; €!. Then a
function f: I — R is said to be differentiable (or) derivable at x, iff

I flxg+ 1) — flxy)
im

t—0 t

Or equivalently
 fx) = flxp)

lim ———

x—x, X — X,

exists and is denoted by f'(x,) or by Df (xg).

2. Progressive and regressive derivatives:

Definition : The progressive derivatives of f at x = x is given by

lim f(xn+r)_f(xc)'r} 0

=0 t

and is denoted by Rf'(x;) or by f'(x, + 0).

The regressive derivative of f at x = x, is given by
£ — F

hn&ﬂ o~ t)—f( EJ,I‘}[I

e _

t
and is denoted by I.f ' (x,) or by f'(x, — 00).
Progressive and regressive derivatives are also called right hand and left hand differential
coefficients of f at x = x.
It is easy to see that f'(x,) exists iff Rf"'(x,) and Lf'(x,) exists and are equal.
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3. Differentiability in [a,b]. A function f:[a,b]—= R is said to be differentiable at o iff
Rf'(a) exists, differentiable at b iff Lf'(b) exists. f is said to be differentiable in [a.b] iff it
is differentiable at every point of [a,b].

4. Derivative of function. Let I* denoted the subset of I consisting of all points of I at which
f is differentiable. Then the function F:I* —= R defined by F(x) = f'(x) for all x € I" is
called the first derivative of f (or simply the derivative of /) and is denoted by f' or by Df.
Similarly 2nd 3™ derivatives of f are defined and denoted by F'.f" e f (n)
respectively.

Note: The definitions given in 1 and 4 above concern two different but related concepts.
The derivative of j at a point a is a number while the derivative of f is a function.
However, very often the term derivative of f is employed to denote both number and
function and it is left to context to distinguish which is intended.

7.1.1 Definition: Let f be defined and a real valued function on {a,b}. For any x € [a, b]
from the quotient.

¢_@,(a:ﬁt:ﬁb,t¢xj ................ (1)
and define
Fl)=Um, ., @(t) i, (2)

provided this limit exists.
We thus associate with the function f, a function f whose domain is the set of points x at
which limit (2) exists; f is called derivatives of f.

If f is defined at a point x, we say that f is differentiable at x. If f defined at every point of set
E c [a, b], we say that f is differentiable on E.

It is possible to consider right hand and left hand limits is (2); this leads to right hand and left

hand derivatives, we shall not, however, discuss one-sided derivatives in any detail.

7.1.2 : Theorem: Let f be defined on [a,b]. If f is differentiable at a point x € [a, b],
then f is continuous at x.

Proof: Suppose that ‘f is differentiable ata x € [a, b].

point we show that f is continuous at x.

Lett € [a,b] 3t # x.
Now £(£) = £(x) = 5L (t — )

Taking limit £ — x on both sides
Um[F(t) — Ff(x)] = lim (L‘M)r lim(t — x)
t—x t—rx t—x

= f(x).0
=10
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= lim £(t) = fix)
t—x
-~ f is continuous at x.
7.1.3 Remark: The converse of the above theorem is not true is a continuous function need
not be differentiable.
Justification: Define f:R = Eby f(x) = [x| vxE R
Now we prove that f is continuous at x = 0 and f is not differentiable at x = 0

Now for any x € R,
x ifx=d
Fe =1 ={ 7

—x ifx=0D
R.H.L=Um,_q, f(x) =lm, g olx]|
=lim, _;|0+ h| wherex =0+ h
=0
L. HL=lim,_,_ flx)=1lm,_, lx|
=lim, _;|0— h|wherex=0—h
=0
SoR.H.L=L.H. L
Hence lim, ., f(x) exists and is 0.
Also, f(0)=|0| =0
Thus lim,._,, f (x) = f(0)

This shows that f is continuous at x = @
Differentiability:
We have f(0) =|0| =0

NowR.H.D f'(0+0) =lim, 5., fle)-fio)

t—2
= linlr_,[,_m%
= limr_,[Hu.l—:l
= lim,, _, % wheret =0+ h
= lim,, E
= lim,, _,(1)
=1
Now L. H.D £'(0 — 0) =lim, ., G@
= linlr_,[,_[,ﬂ:r}_ﬁ

=0
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Il
t
. o-h

= lim,, _, Lo-nl wheret=0—h
0-h

= lim, _,_,

= lim LE
r—0

= lim,, .,(—1)
=-1
SoR.H.D#L.H.D
Flel=r(
t—0

. 0 .
alim, ) does not exist

That is £'(0) does not exist
This shows that f is not differentiable at 0.

7.1.4 Example:
Take the function f[x) = |x| [1,—1].
clearly f is continuous at x = 0.

. (e)—ri0 . -0 . r
For t # D, lim 170 _ lim fld-o _ lim m,
t=0 t—0 t=o t—0 tzx0 ¢

Butlril—>lastﬁﬂ‘*and%%—last—ﬂil'

lim I does not exists.
t=0 ¢
Hence f is not differential at x = (.

7.1.5 Theorem: Suppose that f and g are defined on [a, #] and are differential at a point
x € [a.b]. Then f +g, fg and é are differentiable at x, and

@ F+raE@=Ff@+e®
(b) (fe)(x) = f (Delx)+e()f ()

(C) (é) [*xw] — glx)f L-::'I:j:::x}g':-r:

In (c) we assume that g(x) = 0.
Proof: Suppose that f and g are differentiable at a point x € [a, b]
@ leth=f+g

we show that h is differentiable at x and h'(x) = f'(x) + g'(x) take some
t € [a,b] 3 t # x. Then

i h(t) —h(x) _ lim (f +8)(t) — (f +g)(x)

t—x t—x t—x t—=x
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— lim (N + (@) - () - (g) (x)]
t—x t—x

W GCETC RICCRET
r=w | t—x t—x t—x
= fi(x)+8'(®)

~ h is differentiable at x and h (x) = f (x) + g (x). So, (f + 2) (x) = f (x) +g (x)
(b) leth =fg
Consider t € [a,b] 3 t # x. Then

F
lim i

t—=x

= lim
E—x

= lim
t—x

= lim
E—x

= lim

t)  hix) _

) (f9k)
m

t—x

|

[f(£)g(t) — f()g(x) + f(D)g(x) — fFx)g(x)

t—=x

li

t—=x

|

t—x

[f(t)g(t) - F(x)s(x)

t—x

|

[F(t)(g(t) — glx)) + (F(t)

t—x

- f(XJ)g(IJ]

())e(x

x

[

£ (1) [gt(t] ; g(ﬂfﬁl)] +1im [[f(r] —t f

|

f(x)g () + f (x)g(x)

~ h is differentiable at x and h (x) = f(x)g (x) + f (x)g(x).
So, (fg) (x) = f(x)g (x)+ f (x)g(x).
@)Mh=;

Take some t € [a,b] 3 t # x. Then

f f
rfm—mkr(ﬁm{ﬁm
eox | t—x  tox t—x

(&) flx)
— i (B 8(x)
t—hx t—x
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f()glx) — flx)g(t)
— lim s(t)g(x)
e t—x

— lim f(Dglx) — fi)g(x) + fF(B)g(t) — Fx)g(t)
x| g(t)g(x)(t —x)
— lim —f(#)(—s(x) + g(x)) + (F (1) - F(x))g()
e g(t)e(x)(t—x)
(t) _g®

-f
:1 T —— ! 1 :-’
im et iR e ™

“FG) L )

=770 P+

_ fl(x)g(x) + f(x)g'(x)
g' (x)

f(x)

« h is differentiable @ (x) = K (x)L ':“E'i?.:::ifl'ﬁ'iﬂ,

7.1.6 Example: The derivative of any constant is zero. If f is defined by f(x) = x,
then f (x) = x. Repeated application of (b) &(c) this shows that x™ is differentiable and its
derivative is nx“* for any integer 7. Thus every polynomial is differentiable and so every
rational function is also differentiable.

7.2 : THE CHAIN RULE:

7.2.1 Theorem (Chain rule):
Suppose f is continuous on [z, b], f'(x) exists at same point x € [a, b], g is defined on an
interval I, which h'(x) = g"(f(x) £ (x)).
Proof: Let h(t) = g(f(t)), where n =<t = h
Suppose that f'(x) exists at same point x € [a, b] and g is differentiable at f(x)
show that h is differentiable at x and ' (x) = g’ [:f (x1f" (x)]
Lety = f(x)
Define the function I/ and V' by

U(t) = M f'(x) and

V(s) = —E"‘”' g ()

Then
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1n1 U(t) = lim M—f'(:{:- =0
Cl I S ¢ |
and _
3131; Vis) = 11n1 %i(}r)— g'(x)_ =0
Let s = f(t)
Consider h(t)-h(x) = g[f(tj) —e(f(x)
= g(s) ~gly)

= (s=¥)[V(s) + g' ()] (from (2))
= [F(O)-F)v(s) +&'(3)]
= (t=x) (v(t) + F (N(w(x)+g'(y)  (from (1))
=}h'r: :Ix} [U(e) 1 FI]Vis) | 8" (v]]

. hith—hix)
= lim ————
= r—x

= lim [U(2) + f'()]lm[V(s) +g' ()]
=f'(x)g ().

So, h is differentiable at x and h'(x) = f'(x)g'(v)

= () =g (F)f' (),

7.2.2 Examples:
(a) Let f be defined by
£l = {x: sinf,if (x=0)
0 if n=10

Clearly for, f is differentiable at all points x # 0 and f'(x) = sin (l) — u:c-s( ) but f'is
not differentiable at x = U,

= lim sin

(eh—Fl0) ’ E'Bl!'.l —
i = lim ( )
t—0 £—=0 £—=0

for t = 0, consider liné
=+

Their limit does not exists

- f'is not differentiable at x = 0.

(b) Let fbe defined by f(x) = {x Sm (if (x # 0)
0 if n=10

clearly fis differentiable at all points x # 0 and f'(x) = 2xsin G) — CDSGJ

Here f is not differentiable at all points x = 0.
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) . (El—flo .t sin{.:} . R
for t # @, consider lim e -rlo) lim L = lim sin (_|. =0
P =0 P =0 Y s

f is differentiable at x = 0 & F'(0) = 0.

But the deliverable f' is not continuous since lim f'(x) = |f| =0
=0

For lim fle-flo) _
=0 =0

t = 0 lim — S‘"ﬁ[?} =0

t—=0 r=

. . f1
=lim sin|-
t=0 3

f is differentiable at x = 0 L f'(@) = 0, but the differentiable f'

0

(¢) Letx; € R* +and f(x) = |x-x,|. The function f is continuous at eachx, € R¥, but
f'(x,) does not exists, since fi (x,) = 1 and f(x,) = 1, for xy, x, € R, xy # x,.

7.3 SOME MORE EXAMPLES WITH SOLUTIONS:

7.3.1 Example: Let f be defined for all real x, and suppose that
If(x) = FI = (x —)°

for all real x and y. Prove that f is constant.
Solution: Dividing by x — ¥, and letting x — v, we find that f'(¥) = 0 for all y.
Hence f is constant.

7.3.2 Example: Suppose f'(x) =0 in (a,b). Prove that f is strictly increasing in
(a,b), and let g be its inverse function. Prove that g is differentiable, and that

g'(f(x))=ﬁ (a<x<bhb)

Solution: For any ¢, d witha < ¢ < 4 < b there exists a point p € (¢,d) such that
fld)-fle)=f'(p)d—c)=0.
Hence f(c) < f(d).
We know that the inverse function g is continuous. (Its restriction to each closed
subinterval [c,d] is a continuous, and that is sufficient.)
Now observe that if f(x) = v and f(x + h) = v+ k, we have

gly+k)—gly) 1 _ 1 1
k f'(x) f(}FHLIJ—fIﬁXJ fx)
Since we know that '
1 1

li =
o @(t) lim @(t)
provided lim @(t) # 0, it follows that for any € = 0 there exists 77 = 0 such that
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| 1 1
[CEDENGIVES =€

if0 < |h| < 1. Since h = g(v + k) — g(¥), there exists § = 0 such that 0 < |h| < n
if0 < |h| < 8.

The proof is now complete.
7.3.3 Example: If

C, c._, C
Co b — feeeee 4+ B n_—p,

°7 2 n n+1
where Cg,rrereeee . C,, are real constants, prove that the equation

CD + Clx Frern +C”_1x”_1 + C”x'! —
Has at least one real root between 0 and 1.

Solution: Consider that polynomial
C. 2 Cu—' C:'z
p(x) = Cpx -I-El:r-l- """" + l:4:”+n_ lx”“,
It is obvious that p(0) = l'l and the hypothesis of the problem is that p(1) = 0.

Hence Rolle’s theorem implies that g’ (x) = 0 for some x between 0 and 1.
7.3.4 Example: Suppose f is defined and differentiable for every x = 0, and f'(x) — 0 as
x — 4o, Putg(x) = f(x+ 1) — f(x). Prove that g(x) — 0 as x — 4o,

Solution: Let € = 0. Choose x, such that |[f'(x)]| < € if x = x.
Then for any x = x, there exists x; € (x,x + 1) such that

fle+1) = flx) = f(x,)
Since |f'(x,)] < e, it follows that |[f(x 4+ 1) — f(x)| < €, as required.

7.3.5 Example: Suppose f'(x) and g'(x] exists, g(x)# 0, and f(x) = g(x) =0. Prove
that
fle)  f'(v)

lim —— ="

e gl(t)  g'(e)

(This holds also for complex functions.)
Solution: Since f(x) = g(x) = 0, we have

t
lim f® _ = lim - i_i(xj
e=x g(t) e g(t) —g(x)
t—x
i £ = ()
_ o t—x
lim g(t) g(x)
P —Xx
)
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7.3.6 Example: Suppose f' is continuous on [a, b] and € = 0. Prove that there exists § = 0

such that
=[O SD ) <

whenever 0 < [t — x| < &, a <x < b, a =t < b (This could be expressed by
saying that f is uniformly differentiable on [a, b] if /' is continuous on [a, b].) Dose
this hold for vector-valued functions too?
Solution: let & be such that |f'(x) — f'(u)| = e for all x,u € [a, b] with |x — | = &.
Then if 0 < |t — x| < & there exists i between t and x such that

THoZrw
and hence, since |u — x| < 4,
_[Or©

—x

=|f"u) = f'(x)l < e

Since this results holds for each component of a vector-valued function f(x), it must
holds also for f.

7.3.7 Example: Give an example a continuous function which is not differentiable.

Solution: Let f be defined by

L1
xsin = forx+ 0
X

f[ﬂ:{ 0 forx=10

Now we prove that f is continuous at x = 0 but not differentiable at x = 0.
R.H. Llim,_,, f(x)=1lm,_ ., (xsz'n f)

— 1 o 1 -

= lim,;, _, (hsm h] where x =0+ h

= lim, _, (h) lim, _, [ sin i]

= 0 X (a finite quantity between —1 and 1)
=0

L. H. Llim,_, f(x)= limx_,D_D(:fsin f)
= lim,;, _, ((IJ — h)sin ﬁ) where x = 0—h
n . (o1

= lim;, o (h) limy, _ ¢ | sin h)

= 0 X (a finite quantity between —1 and 1)
=0

SoR.H.IL=L.H L=0
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Slim, L, flx) =0

Also f(0) =10

= lim,_, f(x) = £(D)

This shows that f is continuous at x = 0.

Differentiability:

LHD=f(0-0)= lin'.L,_,n,_n,M

[ ¥

tain i—D
t

=lim, _,_q —
=T .1
= lim, _y_g sin -
. .1
= lim,, o sin — wheret =0—h
-h
— 1' _1 1 i
= lim, 5[ (—1)sin -
Which does not exist.

R-H.D=f"{0+0) =lim, 5., m::J;I:D}
’ tain %—I}
= hmr—@w?

=1 ' 1
= lim, g4 sin -
= lim sin 1
=0 h
Which does not exist.

Since Neither the left hand derivative nor the right hand derivative exists at x = 0.
f has no derivative at x = Q.

Hence f is not differentiable at x = 0.
Exercise :
Define derivative of a function on [a, &].
Show that sum of two differentiable functions is differentiable.

Give an example a continuous function which is not differentiable.

ElE ol

State and prove chain rule.

7.4 SUMMARY:

This comprehensive lesson introduces learners to the concept of derivatives of real
functions, providing a solid foundation for optimization techniques. Through a
combination of theoretical explanations, named theorems, and practical examples,
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learners will develop problem-solving skills using derivatives to optimize functions. This
lessons covers 1. Introduction to derivatives of real functions, Named theorems, such as
The Chain Rule Theorem, Examples with solutions to illustrate key concepts, and
Exercise problems to reinforce understanding and develop problem-solving skills.

7.5 TECHNICAL TERMS:

R/
0.0

Differentiable function
Right hand limit

Left hand limit
Continuous

7 ®. ®. ®.
L X XS X

Inverse function
Strictly increasing
Chain Rule

R/
0.0

R/
0.0

7.6 SELF ASSESSMENT QUESTIONS:

1. If Cy+ 22 4o 2022 4 Tl = 0,where Cp,eremmee ,C,, are real constants, prove that
&= n n

the equation Cy + C;x +-==- +C,_,x" 14+ C,x™ = 0 has at least one real root
between 0 and 1.

2. Let f be defined on [a,b]. If f is differentiable at a point x C [a, b], then f is
continuous at x. Is the converse true? Justify Your Answer.

3. State and Prove Chain Rule.

7.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

Dr. V. Amarendra Babu.



LESSON-8
MEAN VALUE THEOREMS AND

THE CONTINUITY OF DERIVATIVES

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To understand and apply mean value theorems for real functions.
% To analyze continuity and differentiability of functions using mean value theorems.

STRUCTURE:

8.0 INTRODUCTION

8.1 MEAN VALUE THEOREMS

8.2 SOME MORE EXAMPES WITH SOLUTIONS
8.3 SUMMARY

8.4 TECHNICAL TERMS

8.5 SELF ASSESSMENT QUESTIONS

8.6 SUGGESTED READINGS

8.0 INTRODUCTION:

In this lesson we derived local maximum and local minimum and proved generalized
mean vale theorem ( Cauchy value theorem), Lagrange language mean value theorem and
Darboux theorem.

8.1 MEAN VALUE THEOREMS:

8.1.1 Definition: Let f be a real valued function defined on a metric space x. we say that f
has a local maximum at a point P €X if there exists § = 0 such that
f(q) = f(p), for all ¢ € x with d(p.g) < §. We say that f has a local minimum at
a point ¢ € %, if there exists § = @ such that f(q) = f(p) for all g € x with
d(p.q) < 4.

8.1.2 Theorem: Let f be defined on [z, b]; if f has a local maximum at a point x {a, b) and
f(x) exists.

Then3 g§=>03a<x-g<x<x+§<band
fla) 2 f(x), yqe[ab]withd(xg) <6 . ... (1)

let t € (x-§&.x)
Then d(x,t) < §
so, f(t) = f(x) and f(t)-f(x) = 0.
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SO,M}G, since t —x =< 0,

o im [f(t] - ff_x?l] =0
By t—x
=0 )

lett € (xx | &)
Then d(x,#) < ¢
So from (1), f(t) < f(x)

So,Miﬁ,sincet—x}x

e [f(t) ~f®]_,
x—+m t—x

From (2) & (3), f (x) =40,

Note: A similar result holds for local minimum.

8.1.3 Theorem: Let f and g are continuous real functions on [a. b) which are

differentiable is [@ ], then there is a point x € (a. b) at which

[F(b) - f(@)]g (x) = [g(b) — g(al]f ()

Proof: Suppose that f and g are real continuous functions on [a, b] and differentiable in

(a.b).

Put h(t) = [F(b) — Flalla () — [a(B)— g(a)lF (5, (a< t <h)......... (1)

Then h is continuous on [a, b], his differentiable in (a, &), since f & g are continuous on

[a,b] and f, g are differentiable on (a, b).

Also h(a) = [f(b) —f(a)le(a) —[s(b) —g(a)]f(a)

= f(B)f(a) - g(b)s(a)

and h(b) = [f(b) — f(a)lg(a)-[g(b) —g(a)]f(b] = F(b)f(a)-g(P)s(a)

~ h(a) = h(b)

Now, we show that h (x) = @ for some x € (a.b)

Case I: Suppose that h is a constant function then,

clearly j,'(x) W% h(t) = hia)

Case II: Suppose that F is not a constant function.

Then1t € {a,b) 3 k(r) + hia)

Then either h(t) = h{a) or h(t) < h(a)suppose that k() = h(a)

= By the well known theorem, h attains its maximum at some point x € [a b]

~h(#) = h(x), tE [a:b]
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Then h has local maximum at the point x € [a.b]
< By the Theorem 8.1.2 , b (x) = 0

If h(¢) = h(a), the same argument is the above, 3 a point x € [a.h] 3 h (x) = 0 From

(1)
h(x) = (£ (b)-f(a))g (x)-(a(b)-g(a)f (x) =D
= (F(b)-f(@))g (0 = (2(®)-2(a))f ()

8.1.4 : Theorem ( Lagrange Mean value theorem ) :

If f is a real continuous function on [a. b], which is differential in (a. b), then there is a

point x € [a: b] such that f(b)-f(a) = (b —a)f (x)

Proof: Let f be a continuous real function on [@ b] and differentiable in (@ b).
Putz(x) ==x

Then g is continuous on _@ ] & differentiable on (@ b) and g (x) = I.

Then by Theorem 8.1.3, there exists a point X € [@ b] such that

(f(b)-f(a))z (x)-(2(b)-2(a)f (x)
so, f(b)-f(a) = (b—a)f (x).

8.1.5 :Theorem: Suppose that f is differentiable in (a, b)

(a) If f (x) = 0 for all x € [a: b] then f is monotonically increasing
(b) If f (x) = 0 for all x € [a: 1] then f is constant.

(¢) If f (x) = 0 forall x € [a.b], then f is monotonically decreasing:
Proof: Suppose that f is differentiable is (a, b)

(a) Suppose that f (x) =0, forall x £ [a: b]

Let X;,%; € [@, b] such that *j < x:

clearly f is continuous on [*1,%2] and differential in (*¥1,%2) so, by
mean value theorem, 3 x € (X,%z] such that

Flx2) flxg=x; xf(x)
= T e (1)

=f)—fED) =007 (x)20)
= f(x1) < f(x2) for X1 < X;
Hence f is monotonically increasing.

(b) Suppose that f (x) =0, for all x € [a. b],
So, from (1), {220 —

= f(x)—f(x))=10
= f(x1) = f(xz), v x5,%; € (ab)
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~ f 18 constant.

(¢) Suppose that f (x) = 0,% x € (a: b) suppose that X; < X
From (1), 22750 — () < ¢

= flx)—flx) =0

= f(x1) = f(x2)

So, *1=x2=f(x1) = f(x2]
Hence f is monotonically decreasing.

Note: We have already known that a function / may have a derivative £ which exists at
every point, but is discontinuous at some point. How function has derivative.

In particular, derivatives which does not exist at every point of an interval has one
important property is common with functions which are continuous on an interval. The
precise statement follows.

8.1.6 Theorem: Suppose f is real differentiable function on [@ P] and suppose
f (a) <4 =< f (b). Then there is a point x € (a:b) such that f (x) = 4.

A similar result holds if f (a) = f (b).

Proof: Suppose that f is a real differentiable function on
[a, b] suppose [ (a) <4 < f ().

Define a function g by g(t) = f(t) — At, T € (D)
clearly g is differentiable on [a, &]. Since f is differentiable.
Here g () =f () — 1
Nowg(a)=f(a)—A<0andg(b)=f(b)—1=10
since g (a) < 0, g is decreasing at ‘a’
so, there exists, t; € (a.b) 3 g(a) = g(t;)
= g has local maximum at some point x = a.
since g (a) = 0, g is increasing at ‘b’
Then there exists some 2 € (a.b) 3 g(t;) < g(b)
= min{g(x)|x € (a.b) } < (t2) < g(b)
=x#+b
so, * € (a. b)
= g'(x) = 0 since z has local maximum at x € (a. b)
so, f(x) A=0
Therefore f (a) = 4

8.1.7 : Corollary: If f is differentiable function in [a, b], then f" cannot have any simple
discontinuous on [, I].

8.1.8 : Examples:
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QO I S=)= x7sin (j—r) for x = 0, f(0) = 0, show that f is continuous and differentiable
everywhere and that £ () = (. Further that f has a discontinuity of second kind of the
origin.

Solution: Since f({ + 0) = 11m (0+ h)?sin (ﬁlh)

= }212'5 i* sin (E) =0

= f(0+0)=10

Similarly f(0— 0} =0

fO+0)=f(0-0)=0=f(0)
= f is continuous at x = 0.

o+R1E Sll'.l|.(n+?“}
k

Again consider ' (0) = lim h*
= 11n1 h sin ( )

- f is differentiable at x = 0
At all other points, it is easy to prove f is continuous and differentiable.

Now ' (x) = f'(x) = 2x sin (%)—r‘.nn(f)atx #0andf(0)=0
2h sln[%}—cnsli%]

it

Therefore £'(0 1 0) = }323

which does not exist. Similarly £ {0 — 0) does not exist
Hence f 'has a discontinuity of second kind at the origin.

(2) Prove that the function f(x) = |x| is continuous at x = 0, but not differentiable at x = 0.
Sol: Since f(0)=0,f(0+0) = ]}in}&f(ﬂ+ h) =0
=lim|0+ Rkl =0
=0
and flo — 0| = }?in'éfllil— hl=0
=lim|0t—h|=0
h—=0

Hence, f is continuous at x = 0
Flotnl—r(o) L
) = 1111

. v
0+0 =l' 1 — =1
SImce f( ) 1m h—% P
— —F —hk| —
and f'(0 — ﬂ]—} f—ﬁ n)=7(0) =}iné| _lh}= 1

Therefore f (0+0) = f'(0-0)
Hence f is not differentiable at x = 0.

8.2 SOME MORE EXAMPES WITH SOLUTIONS:

8.2.1 Example: If in the Cauchy’s mean value theorem, we write

¢(x) = e and f(x) =77,
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Show that ‘¢’ is the arithmetic mean between a and b.
Solution: Hence,

B(b) — $(a) _ e?—e"
Fb)—fla) =P —e

= —g%g
— _en+b
and
p'(x) e
Fe =
Therefore,
¢p'lc)  ef
fle) —e
= —e?*,

Substituting these values in Cauchy’s mean value theorem, we get

— _e:z+1' = _gif
or,

2Ze=a+ b,
ie,c=>(a+h).

Hence ‘¢’ is the arithmetic mean between a and b.

8.2.2 Example: Verify Cauchy’s mean value theorem for the functions x~ and x? in the

interval [1,2].
Solution: Let f(x) = x%, ¢(x) = x*. Then
6(2) (1) _8-1
f(2)-f(1) 4-1

_ 7
3
and
g’ () _ b
frx)  2x
3
=—r.
2
Since,
¢'(c) 3c”
flie)  2c
3
=—c.
2
Therefore,
37
2€73
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14
c=—
9

Since this value of ‘¢’ lies in interval ]1, Z[, Cauchy’s mean value theorem is verified.
8.2.3 Example: If, in the Cauchy’s mean value theorem, we write

¢(x) =Vxand F(x) = 7,
N
then, ¢, is the geometric mean between a and b and if we write

¢(x) = (&) and F(x) = (),
then, ¢, is the harmonic mean between a and d.
Solution: When ¢(x) =+/x and f(x) = (i;), we have

¢(2) — ¢(a) _¢'(c)
f)=fla) f£'(c)

— 1y -
R ;’b—“fi =(z)‘7_i
H)-GF -5

—y/(ab) = —c or c =4/ (ab),

That is, ¢ is the geometric mean between @ and b.
And when ¢(x) = (xid), flx) = G), we have

ra| =

Thus

B(b) = B(a) _ ' (<)
&) —f@ @

1 _1 3
(z)-G
Thus
n:+.b_z _ 2ab
B " 7 Tarp

That is, = is the harmonic mean between « and b.
8.2.4 Example: Use Cauchy’s mean value theorem to evaluate

cos 1 TX

* 7 1og(3)
Solution: Let f(x) = cos an‘}, g(x) =logx,a =x,b= 1.
Putting these values in Cau(.:_hy’s. mean value theorem,

f(b) —fla) _1'(c)

. = a<c<bh
glb) —gla) g'(c)

We get
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--1 --1 —lnsin(lnc)
cogin—cogjn’x 3 5

= Jx=c=l1-
log1—logx 1
c
Taking limits as x — 1 which implies that ¢ — 1, we get
1
0—cos|5mx
RS
o
log ()
1 . /1
. —Ensm(inc)
=lm
c—+1 l
c
or
_CDS(% n.'x) 1
lim - = m
x—=1 103(;_] 2
. 1
as sin (;Hc] —“lasc—1
or
Al
cos é?rx) Il T
T oe(3)

8.2.5 Example: Use Lagrange’s mean value theorem to prove that
1+x<e*<1+xe™, Vx=0.
Solution: Consider the function
Flx)=¢e* in [0,x] -
Then f is continuous in [0, x] and differentiable in ]0, x| .
Consequently by Lagrange’s mean value theorem there exists ¢ € ]0, x[ such that

flx)—f(u)
¥ —
fro=1
or
e¥ —1
g = erniennnea (1)
x
Now,ﬂﬂic:‘:xﬁe”{ec{ex .................... (2)
From (1) and (2),
et —
el =< <e® YWx=10
x
or
x—
1 == < e
x
or
x=e¥—1<xe*
or

14+ x=<=e*=1+xe”,
Which proves the required result.
8.2.6 Example . Assuming the derivatives which occur are continuous, apply the mean
value theorem to prove that

@' (x) = F'{f(x)} f'(x), where ¢p(x) = F{f(x):-
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Solution: Let f{x) = t so that ¢:(x) = F (1) -

Now,
) = i 2D 2
_ Flf(x+h)]— F[flx)]
= lim
h—=0 h
_ EEéF[ﬂ.xl +hf'lx }i; 6,h)] — f’[f[:f."l]’ [0<8, <1]

[since f(x + h) = f(x) + hf'(x + 6,i), by the mean value theorem]

. F(t 1 H) F(t)
= lim

lim o ,where H= hf'(x+ 6,h]

F(t)+ HF'(t+ 68,H) — F(t)

D<A, <1
h—0 h 3! = ]

[since F(t + H) = F(t)+ HF'(t + 6, H), by the mean value theorem]
 HF'(t+6,H)
—nn—
h—0 h
5 hf' (x+ &, h)+ F'[t+ & hf (x+ 0, h)]
N hlﬂ h
=f F () =F'[f(0] f'(x)-

Note: This example provides an alternative proof of the Chain Rule(Lesson-7, Chain Rule
Theorem).

8.3 SUMMARY:

This lesson provides a comprehensive exploration of Mean Value Theorems,
empowering learners to analyze and understand real functions. Through a combination of
theoretical foundations, proof-based explanations, and illustrative examples, learners will
develop expertise in applying Mean Value Theorems to investigate continuity and
differentiability.

8.4 TECHNICAL TERMS:

% Metric Space

+» Local Maximum

% Local Minimum

% Continuous function

% Differentiable function
+» Constant function

% Monotonically Increasing
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% Monotonically Decreasing
% Discontinuous

% Discontinuity of Second kind
Arithmetic mean

K/
0’0

X3

S

Geometric mean

X3

S

Harmonic mean
Origin

X3

S

8.5 SELF ASSESSMENT QUESTIONS

1. Let f and g are continuous real functions on [a, b] which are differentiable is
[a: b], then there is a point x € (a:b) at which

[f(b) — fla)]g'(x) = [g(b) — g(a)]f'(x).
2. Suppose that f is differentiable in {a, b)
(a) Iff (x) = Oforall ¥ € [a. h] then f is monotonically increasing
(b) If f (x) = 0 for all x € |a.b] then f is constant.
(¢) If f (x) = 0 forall x € [@ b] then f is monotonically decreasing.
3. If f(x)=x"sin G) for x %0, F(0) =0, show that f is continuous and

differentiable everywhere and that f'(0) = 0. Further that f' has a discontinuity of
second kind of the origin.

4. Assuming the derivatives which occur are continuous, apply the mean value
theorem to prove that ¢ (x) = F{f(x)} f (x), whereg(x) = F{f(x)}-

8.6 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

Dr. V. Amarendra Babu.



LESSON-9
L’HOSPITAL’S RULE AND DERIVATIVES OF

HIGHER ORDER, TAYLOR’S THEOREM

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To study another equally important concept namely differentiation that is essential in
the study of velocity and acceleration of continues paths.
% To analyze L-hospital’s rule and derivatives of higher order, Taylor’s Theorem.

STRECTURE:

9.1 INTRODUCTION

9.2 DERIVATIVES OF HIGHER ORDER TAYLOR’S THEOREM
9.3 SOME MORE EXAMPLES WITH SOLUTIONS

9.4 SUMMARY

9.5 TECHNICAL TERMS

9.6 SELF ASSESSMENT QUESTIONS

9.7 SUGGESTED READINGS

9.1 INTRODUCTION :

In this lesson, we introduce higher order derivative and proved two theorems L-
Hospital’s rule and Taylor’s theorems.

L’HOSPITAL’S RULE USES:

Using L Hospital’s rule, we can solve the problem in 0/0, co/ca, oo — o, 0 X o2, 1%, @®, or
0° forms. These forms are known as indeterminate forms. To remove the indeterminate forms
in the problem, we can use L’Hospital’s rule.

9.1.1. L-Hospital rule theorem : Suppose that f and g are real and differentiable in
(a,b) g'(x) #0, for all x € (a,b) where —0 < a < b < 4+ suppose

|'|-v
1) f,—“j —wAdasx—a
g lx)

if
2) f(x) - 0andg(x) »0asx—a
orif
3) glx)»+mwasx—a
then

4) %—:uﬁlasx—ut
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Proof: To prove this theorem in two cases
(1) —w=<4d<+wand —w<4 < +w
Case I: Suppose —e2 = A < oo

Choose a real number g such that 4 <2 g then choose  such that 4 << r <Z gq.

since f,'—x;' — A as x — a, there is a point ¢ € (& b) such that
Elx
f'x}{ﬂlfa:‘:x{vﬂic .............................. (5)

Then by, known theorem, there is a point t € (2, %), such that
(F(¥) = f(x))g" (1) = |ely) — g(x)]f (1)

e
So, F=flo) _ (8 6
° glxl—gly) g (t) =T ©)

Suppose (2) holds, Then by (6)

IV _1r® _ (cgex<ti<y<c)

gly) 'tl'
f:»]'

Sr<gifa<y<c.................... 7
gy]'_r gifa<<y<rc (7)

then there exists a point €1 € (&, ¥) suchthat g(x) > g(y) and g(x) > 0,ifa <x <¢,

Y:' glx)
(=)

) - flx) gly) - g(X) _f@

on both sides

g(y) —g(x) - [g(:f) - g(x)]

Now multiplying (6) by £

g(v) — g(x) g(x)  g'(t) g(x) g(x)
FO-Ff() _ F (M [e() —e()] - [e(y) — E(x)]
g(x) gt e | | 2(x)

- fFO-F&) _f'®) [g(x) — g(y)] _1 B @]
g(x) gt sl=) | | sl=)

flx)  F(») . s
- g(x) g =7 [_ g(x)

fix) syl  f(v)
e " Te@ e ®

............. (8)

Since g(x) — 4+ as x — a, taking limits on both sides exists a point ¢, € (a,,¢,) such
that
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= f(ﬂ:‘:r fa<xz<eg <c
g(x) .
f(x)

=——=r<gq, 5 X S O [y teeresiesssssssass g
g =4 %)

Case II: Suppose —oo0 << 4 = +0
choose p such that p =< A
By same argument in case I there is a point ¢ =

P{f_xj(ﬂ{x{cgj .......................... (10)

9.2 DERIVATIVES OF HIGHER ORDER TAYLOR’S THEOREM :

9.2.1. Definition: If f has a derivativesf 'on an interval and if f' is itself differentiable we
denote the derivative on f" by f" and call the second derivatives of f, continuing in this
manner, we obtain functions f,f', f",. f", ... f ) each of which is derivative of the
proceeding £ is called the n® (or) derivative of order n, of f.

In order for f'(x) to exists at a point x, f'*~ (t) must be differentiable at x. Since "~/

must exist is a neighborhood of x. £*~2) must be distinct point of [a, b] and define.

9.2.2. Theorem (Taylor’s Theorem):

Suppose f is a real function on [a, b], n is a positive integer, f£'*~Y is continuous on [a, b],
£ (¢ exists foraway t € (a:b). Let a,f be distinct points of [a, b] and define

N P@
P(t) _; (= @) e (D)
Then there exists a point x between a and § and such that
':'z iy
f‘[gj p[ﬁ) _|_ , ( ) aj?! .................. fz“]

Proof: If n =1, the Taylor’s reduces to mean value theorem suppose that 1 = 1

Let M be a number defined by

F(B) =p(B) + M(f — @)™ weeeeeeeesrmmsnnsnnans (3)
and put
g(t)=f(t) —P(t) —M(t —a)" (@t < b)) weeeeevmmenens (4)

Now, we show that
(i) P¥(a) = F*)(a), for k =012, ...(n — 1) and

(11) gla) =g'(a) == g'::'z—l} (a) =0
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From (1),

p@ )+ L8 o)+ LD ey +"1Tﬂ$' (6= @)t
So, P(a) = fla)

Now, %, € (&, x,_;)

=2>P(a)=0+f(a)+0+--40

= P'(a) = f'(a)

Now P'mU(t) = % = = ()

=~ P (a) = f¥(q), for k=0,1,2,...(n — 1)

Also, g'(t) = f'(t) — P'(t) — M(t —a)" from (4)

So, g(a) = fla) — P(a)

gla) =0andg'(t) = F'(t) - P'(t) - M(t —a)"*

g'(a) =f'(a] —P'(a) =0

similarly, we prove that g" (&) = g""(a) = = = g™ V(a) =0

Now, g™ (£) = F™(£) — Mn!

= g0 t) = £ () — Mn! (degree of P(t) =n— 1,50 P () = 0)......... (5)

Now from (4), g(8) = fF(B) — P(£) — M(B—a)* =0

from (3) we know g is continuous on [, 8] and differentiable in (e, 5.
Then by mean value theorem, there exists some x; € (@, £) such that
g(B) —gla) = (B —a)g'(x))

0=(f—a)g'(x,)

~g'(x)=20

Also g' is continuous on [a. x,] and differentiable 0 in (a.x,), again by mean value theorem
there is some x, € (&, x,) such that

g'(x)—g'(a) = (x;—a)g" (x;)

=g'(xn)=0

We continue this process, there exists a point x,, € (&, x,_,) such that g™ (x_) = 0
By from (5), g** x,)= Fin {x,) — M -n!

= f@(x )=M-n!

(St 1
M = f_lnll:‘r.‘l.:I

.

Put x = x,
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f'nll:_r)

Then M =

Substituting in (3) we see

£B) = p(B) + -2 (8 — o)™,

n!

9.2.3. Theorem : (Taylor’s theorem with Cauchy’s form of remainder)

If f is a real valued function on [a, a + h] such that all the derivatives upto (n — 1)th are
continuous in & < x < a +h and f* (x) exists in @ < x < a +h, then

I:

fla+h) = fla) + kf'(a) + %f”(aj -
-1 o R o
""" tomoi @+ Gy (a— 9" M (a+6h),

where 0 < 8 < 1,
Proof: Consider the function ¢ defined by

$(x) = F(x) + (a+h—2)f' () + (‘*'2—!ﬂ‘f~m .
_ n—1
""" + %f(”_lj (x)+ (a+ h—x)A,

where 4 is a constant so chosen that ¢(a + h) = ¢la),
ie, fla+h) = f(a) + hf'(a) + 5 F'"(a) +-~

hu -1

(n — 1-.| ! Jqul-:”_.lj (({,) 4 FrA erereeenns (1‘\

...... +

It is easy to see that ¢ is differentiable in ]a, a + h[. Hence ¢ satisfies all the conditions of
Rolle’s theorem.

Therefore, ¢'(a +6h) =0 [0<8 < 1].
But

+I _ n—1 L
0'(x) = & = f)). Fo @) -4,

Since other terms cancel in pairs.

Therefore, 0 = ¢/ (a + 0h) = L2285 £ (q + 0R) — 4
or
A= R 1 g n—1 ginl oF

e ) (a+ Bh).

Substituting this value of 4 in (1), we get
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fla+h) =fla) + kf’ (ﬂJ+ f”( )+

h™~ 1 n L
...... + = l)l (n—1] [ﬂ) + ST [1 E)u—lfgz} [ﬂ,+ ghj (Aj
The (n + 1)tk term
k" o
m(l—ﬂj”_lf (n) (q_—|— Hh_) ............ (Hj

is called Cauchy’s form of remainder after n times in the Taylor’s expansion of f(a + h) in
ascending integral powers of h.

9.2.4. Corollary: (Maclaurin’s theorem with Cauchy’s form of remainder)

If we change a to 0 and h to x in (A4), we get

fx) =F(0)+ xf'(0) + %f”(ﬂj Frenn

n=l n
...... _|_m Fin-1() + = (1—8)" 1 (8x),[0 < 8 < 1] =weeeee (C)
The (n + 1)th term
m-1D! (1—8)"" [ (Bux) veeeveenes (D)

is known as Cauchy’s form of Remainder in Maclaurin’s development of f(x) in the interval
[0, x].

9.3. SOME MORE EXAMPLES WITH SOLUTIONS:

9.3.1. Example: Let f be a continuous real function on R’  of which it is known that
f'(x) exists for all x = 0 and that f'(x) = 3 as x — 0. Dose it follow that £'(0)

exists?
Solution: Yes,
By L’Hospital’s rule
lim f—()_f( ) limf'(t) =3,
r'—*l} t—0

and this by definition means that f'(0) = 3.

9.3.2. Example : Evaluate lim {2dne-einie)

=0 t—sint
Solution: Given,

(2sint —sin2t)

lim .
=0 t—sint

Differentiate the above form, we get
. (2cost — 2cos2t)
=lim

t—=0 1—rcost
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= lim

Now substitute the limit,
_—2+8
1

=— =8
1

Therefore,

9.3.3. Example: Evaluate lim =

=0
Solution: Given,

Now substitute the limit,

Therefore,

9.3.4. Example: Prove that

a*x? ax®

3!+5!

Solution: Here f(x) = sin ax.

sin ax = ax —

Therefore, f'(x) = acosax = asin (cw: +§)
f'(x)= s cus(ax{-%) = g2 Sin(cw: P g)

[} m
() — u? cus(cu-l— EE) —u’ siu(cu +3 '2

™

" (x) = a4:Ds(m+3'?):“4Sin(m+4'

&

(—2sint + 4sin 2t)

(—2cost + 8cos 2t)

(2sint —sin 2t) .
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) = gECDS(ﬂI—|— 4;) =af Sin(ax e g)

o . n—1
FlrD(y) = gt sin(ax + : > ]"!.')

and
() R E
' (x)=a sin | ax + 2)
So that
) : NIt
f"”:'igx) =a” sin{aﬂ:{ +? .
Therefore,

Fl0)=sin0=0;
w
"(0)=asin-=a;
f 2
fFr{0)=a’sinmt=0;
3
F'(0) = a® ;in—ﬂ: = —a?;
2
f®(0) = a*sin2m = 0;

5w
F7(0) = a® sin7 = a®;

]

n— 1

FY(0)=a"‘sin -

Substituting these values in

T: TE T4 X
FG) = F(0)+xf'(0) + 2o£7(0) + 2 £ (0) + 1 £¥(0) +
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n—1 ) ) e -
...... - Fin-1) T plndr
+ (1‘1 —_ 1)|f (ﬂj + H-l f \.gxl
We get,
inax=0+xa+0 X 3+0+x5 5+0 + T (”—1 )
e e 31 51 (n—1n® U2 T
+x” . (9 +mr
—a" sin{afx +—
or
. ELH'J.H_l_rLF‘;r.F‘ +EL”_"1”_" . (u—l )+c:,”;r.” . ( 0 +:u¢)
gin ax = ax — [ sin T sin ( afx -\
3! S! (n—1)! 2 n! 2

Hence the solution of this example.

9.3.5. Example: Show that ¢ # * (which occurs in the Lagrange’s mean value theorem)
approaches the limit = as ‘ h * approaches zero provided that £ (a) is not zero. It is
assumed that f''(x] is continuous.

Solution: Since £ [x) is continuous at x = 0, it follows that £ {a] exists.
Hence by Taylor’s theorem we get

Fla+h) = hf'(a) +— F"(a+ G'R) =weveeeees (1)
Also by mean value theorem, we have
fla+h) =fla)+ hf ' (a+Bh) =wmeeeeeees (2)

Substituting (2) from (1), we get

0= hf' (a)+ f”( +8'h)— hf'(a+ 6h)

or

Fla+8h) —F'(a) == F"(a+ 8'Rh) e (3)

Again since ' is contmuous and differentiable, we have by mean value theorem,
Ffla+8h) =F(a)+B8hf"a+ B8"0R)

Fla46h) —fF'(a) = Ohf " (a+ 6" GR) -weeeesesrsseens (4)
From (3) and (4), we get

I
ORf" (a+ 8" 6h) = %’f'“ (a+6'h)

or
g — 1 f(a+8'h)
f”[a+ ara’ hj
Hence,
1 L
lmé& — —f (ﬂ:)

h—0 2f"(a)’
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B | =

provided f"'[a) # 0.

9.3.6. Example: If f(x) = 7(0)+xf"(0)+ i—?f" (8x) find the value of ¢ # * as x tends to

1, f(x) being (l—sz. _
Solution: f(x) = f(0)+ xf'(0) + if (B) eveeroneeens (1)
We have

5 15 1
FO=1f0)=—5.f"(0x)=—(1-6x)72 -
Hence substituting these values in (1), we get

-

5 L
EX;EI_H:X}: .

Therefore, as x = 1, we get

5 5 x
(1—:1’)3=1—E:X+

0=1 5+1 15(1 9)%
B TR
or
1 4
[1_9)__E
or
o 9]—16
© 25

9.3.7. Example : If f(x+ h) = f(x) + hf'(x) +%f”[x + 8h), find that value of ¢ 8 as

This gives & = 15 .

x tends to a, f(x) being (x — 1)z,

Solution: f(x + h) = f(x) +hf'(x) + :—Tf" (2 4 Bh) wereveeeeeees (1)
We have
5 5 3
Fe+h) = flx+h-a),  F()=2(x—a),
15 1
f(x+6h)= T(x-i— 6h —a)?
Substituting these values in (1), we get
(x4 h—a)r=(x—a): +2(x — )sh + 2 (x + Bh — @)= 1 womorororn (2)

Hence as x — a, we get from (2),
5 15 L h?
hz = T (Oh)z - 5
or
64

225
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9.4

9.5

9.6

e

9.7

1.

SUMMARY:

This lesson explores the fundamental concept of differentiation, crucial for
understanding velocity and acceleration in continuous paths. Learners will delve into
advanced calculus topics, including L'Hospital's Rule, higher-order derivatives, and
Taylor's Theorem. This lesson covers - Introduction to differentiation and its
applications, L'Hospital's Rule for indeterminate forms, Derivatives of higher order,
Taylor's Theorem and its applications, Taylor's Theorem with Cauchy's form of
remainder, Maclaurin's Theorem with Cauchy's form of remainder, and Practice
examples with solutions to reinforce understanding.

TECHNICAL TERMS:

% Neighborhood

¢ Real Valued function
+» Continuous

¢ Differentiable

% Higher order derivative
¢ Remainder

SELF ASSESSMENT QUESTIONS

State and Prove L’ Hospital’s Rule
State and Prove Taylor’s Theorem.

Prove that
. CIE.'XE ﬂ,E_’x’E a”_lx”_l . n—1
sinax = ax — + e + sm( }r)
3! 5! (n—1)! 2
ax" NI
+ sin (rrﬁfr +—
! 2

If f(x) = fF(0)+ xf(0)+ ;—?f"[ﬁ'xj find the value of ¢ & > as x tends to 1, f(x)
being (1 — x)g

SUGGESTED READINGS:

Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

Dr. V. Amarendra Babu.



LESSON -10
DIFFERENTIATION OF VECTOR
VALUED FUNCTIONS

OBJECTIVES:

The objective of the lesson is to help the learners to understand

% To understand the concept of definitions and computation of derivatives of vector

valued functions and their properties.

% To apply differentiations for solving problems in Physics, Engineering and

Mathematics.

STRUCTURE:

10.0
10.1
10.2
10.3
10.4
10.5
10.6

10.0

DIFFERENTIATION OF VECTOR VALUED FUNCTIONS
PROPERTIES OF VECTOR VALUED FUNCTIONS
SOME MORE EXAMPLES WITH SOLUTIONS
SUMMARY

TECHNICAL TERMS

SELF ASSESSMENT QUESTIONS

SUGGESTED READINGS

DIFFERENTIATION OF VECTOR VALUED FUNCTIONS

10.0.1 Definition: Let complex valued functions f defined on [a, b], and If f; and f, are the
real and imaginary parts of f, that is

flt) — f1(t) +i £(2), for @ =t = b, where f,(t) and f;(t) are real then we clearly
have

FE)=F+i ()l (1)

Also, f is differentiable at x if and only if both f; and £, are differentiable at x. Passing
to vector valued functions in general, i.e., to functions [ which map [a, b] into some R¥,
we may still apply definition 10.1 to define £ (x): for each t a point in R¥, and the limit
is taken with respect to the norm of R¥. In other words, f (x) is that point of R¥, for
which

lim @—f'(:{) =0

t—x t
f is again a function with values in R

if f = (fufor s fi) then f = (fL, fa, .. fir) and f is differentiable at a point x if and
only if each of the functions f,. fi. .... f;, is differentiable at x.

When we turn to the mean value theorem, however and to be of its consequences, namely



|Centre for Distance Education 10.2 Acharya Nagarjuna University|

L-Hospital’s rule, the situation changes given two examples will show that L-Hospital
rule & mean value theorem fails for complex valued functions.

10.0.2 Example :

Define, for real X, f(x) =e™ =cosx+isinx . ... ... 3)
Then f(2m) —F(O)=1—1=0...............cccoccconeiiiinnn. )
But £ (x) =i @™ &)

So, that |f (x)| = |i e™|= il |e**| = 1, for all real x.

So, the mean value theorem fails to hold this case.
(OR)

Let f:R—=C:f(x)=e*=cosx+isinx.

Consider the interval [0, 2m].

Then the function f is continuous and differentiable for all x £ & so that the conditions
of the mean value theorem are satisfied in the interval. But

fzm)—f(0)=1-1=0,
whereas I (x) = i - €™ 5o that |f'(x)| — 1forall x € K,

Hence the mean value theorem does not hold in this case.

10.0.3 Example : Define f(x) = x and g(x) = x + x2- e¥7,

forx € (0,1)......ccoiiiiinn, (6)
x
= liné fExjj = lin'é T
* Blx T +x?-est
x
=lim

:}fiﬂé;izl I::'-'x-exiz—:vﬂasx%ﬂ)
x 1+x-e?‘r)

Now,

f(x)=1

and

. . L 1
g(x)=14x%-ex*(—2ix—3) +ex* 2x

P4 1
=1——ex" +2xex"
x
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Lo 20y L

—l+(...x x)e . ij
U SR AN |

::-|E. (2 J_-l-(zx—;)ex

= |2 2 j_'::2 1 a8

22— — 12T (8)

_ f(x 1 x

S

N CON

So L-Hospitals rule fails in this case

Note: By mean value theorem, it follows that
If(a) = F(B)I < (b —a) b |f ()]

We shall now prove the vector-valued analogue of
If(@) = F()l < (b —a) lub |/ (x)]

In the below theorem.

10.0.4 Theorem : Suppose that f is a continuous mapping of [a, b] into R¥ and f is
differentiable in  (a,b). Then there exists x€ (a,b) such that

f(a) = f(b) = (b -a)|f (x)].

Proof: Given that ‘f’ is a continuous mapping from [a, h] in ¥ and f is differentiable in
(a,b).

Let Z = f(b) — f(a) and
define &(t) ==zf(t), t € [a,b]

Then ¢ is real valued continuous function on [a, ] which is differentiable in {a, &), since
f is continuous on [a, b] differentiable in (a, b)

Then, by mean value theorem, there exists * € (a, b) such that
¢(b) — ¢(a) = (b —a)g (x)
=(b—a)Zf (x)eeeeeeeieeaannnn, 1)
But ¢(b) —¢(a) = Zf(b) — Zf(a)
= Z(f(b) — f(a))

2 (b—a)Zf (x)=Z% i, ?3)
If Z=0,thenf(b)—f(a)=0
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=20=1f(B)—f@I<B=a)|f ()] i @)
Suppose that Z # 0, then from (3)

121* =1b —al|zf ()| = (b —a)lz] - |F (x|

So, 1217 < (b — a)IZ| - | (x)]

1z < (b —a)|f ()]

A If () = F(@)] < (b —a)|f ()]

10.1 PROPERTIES OF VECTOR VALUED FUNCTIONS:

All of the properties of differentiation still hold for vector values functions. Moreover
because there are a variety of ways of defining multiplication, there is an abundance of
product rules.

Suppose that w(t) and wi(t) are vector valued functions, /(L) is a scalar function, and ¢ is a
real number then

10.1.1 Property: %[u (D) +w(t)) = %u(tj +%w(t],

10.1.2 Property: %cu (t) = c% v(t),

10.1.3 Property: = (f ()v(1)) = £/ (v (t) + f()v' (1),

10.1.4 Property: (v(t) -w(t)) = v'(8) - w(t) +v(t) - w' (1),
10.1.5 Property:(v(t) X w(t)) = v' () x w(t) + v(t) x w'(t),
10.1.6 Property: = v(f (1)) = v' () (£(8))f'(®).

10.2 SOME MORE EXAMPLES WITH SOLUTION:

10.2.1 Example: Show that if r is a differentiable vector valued function with constant
magnitude, then

r-r' =0.
Solution: Since r has constant magnitude, call its magnitude k,
E2=1rlP=r-r.
Taking derivatives of the left and right sides gives
0= {(r-r)
=r'-rt+r-r
=2r-r'.
Divide by two and the result follows.

10.2.2 Theorem. Let f:[a,b] = R¥ and let f be differentiable at x, (a < xy < b). If
a<a, <zxy<fl, <bforn=12,3, and a, = x,, B, = x, as n — o
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then
lim f(]‘guj _f(a:zj _ ff[:xc.)‘
ne n Oy
Proof: Let A, = :g"%”; sothat 0 < A, < 1.
Then for each 1, we have
ACARTICANPS
n Oy
=2, {w_f“[%)}_F[l_l?:){w_f“[xﬁ)} ........... (1)
n xl} n xl}

Since f is differentiable at x, the two expression within the brackets on the right hand
side of (1) tend to 0 as n — == and since

(4,)and (1 — 4,,) are bounded sequences, it follows that the right hand side of (1) tends
to0asn — 00,

Consequently, the left hand side of (1) also tends to 0 as 1= — oo, that is
. f(ﬁu) _f(au)
lim ————

mn—og

n a?! B f [xjjl
10.2.3 Example . Suppose f' is continuous on [a,b] and € = 0. Prove that there exists
¢ = 0 such that
t)—filx
FO-F@ <.
t—x
Whenever 0 < [t —x| < §,a<x<ba<t<h
(This could be expressed by saying that f is uniformly differentiable on [e. b] if f' is
continuous on [a, b].)
Does this hold for vector-valued functions too?
Solution. Let & be such that |f'(x) — f'(u)| < € forall x,u € [a, b] with |x —u| < &.
Then if @ == [t — x| == & there exists u between t and x such that
FO-Fe _
0 )
and hence, since |u — x| < &,
FO-f
———f'(x)
t—x
— 1 w) = (=) =«
Since this result holds for each component of a vector-valued function f(x), it must
hold also for f.
10.2.4 Example . Let f be a continuous real function on R', of which it is known that f"(x)
exists for all x # 0 and that f'(x) = 3 as x — 0. Does it follow that f'(0) exists?
Solution. Yes. By L’Hospital’s rule
lim f(e) £(0)

t—=0 t
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= linéf'(tj =3,
=
And this by definition means that ' (0) = 3.
10.2.5 Example . Suppose f is defined in a neighbourhood of x, and suppose f" (x) exists.

Show that
, flx+h)+ flx—h)—2f(x) _ _, .
iy 3 S

Solution. For a real-valued function this is a routine application of L.” Hospital’s rule:

- flx+h)+ f(x—h)—2f(x)

B he
i f'(x+h)—f'(x—h)
T a0 2h
_1L fllxt+h) —f'(x) f'lx)—f(x—h)
= —lim +
2 h—0 h I
— fl’l’ (xj

For complex-valued functions the result follows from separate consideration of real and
imaginary parts.
The limit will be zero at & = 0 for any odd function f whatsoever, even if the
function is not continuous.
For example we could take f(x) = sgn (x), whichis | 1 for x > @,and 1 forx < 0.
10.2.6 Example . Suppose a € R, f is a twice-differentiable real function on (a, ), and
M,, M,,M, are the least upper bounds of |f(x)|, |f'(x)I.|f" (x)| respectively, on
(a,0) Prove that M < M M,.
Hint: 1If h = 0, Taylor’s theorem shows that

F1() = =[x+ 20) = £l = b (§)
for some ¢ € (x,x + 2h). Hence
If(x) = JLM:+%

To show that M} = 4M,M, can actually happen, take @ = —1, define
2x*—-1,(-1<x=<0),
flx)=4x*-1

T (U< x <o),

-

and show that My, = 1, M, =4, M, = 4.

Does M7 < 4M,M, hold for vector-valued functions too?
Solution. The inequality is obvious if My = +o2 or M, = +cg,

So we shall assume that M, and M, are both finite.

We need to show that

I ()] = 24/ MM,

for all x = a. We note that this is obvious if M, = 0.

Since in that case f'(x) is constant,

f(x) is a linear function, and the only bounded linear function is a constant, whose

derivative is zero.

Hence we shall assume from now on that 0 << M, << +wand 0 < M, < 4oo.
Following the hint,
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—
We need only choose h = |'%, and we obtain

Uc|l (.'X)l = 2\," MEM:
Which is precisely the desired inequality.
The case of equality follows, since the example proposed satisfies

=1—- i =

flx)=1 i1 forx=0.
We see easily that [f(x)| < 1 forall x = —1.
Now,
/() = o for x> 0

a) ————— loraz=

(x4 1)°

and

filx)=4x forx< 0.
It thus follows from above f'(0) = 0 and that f'(x) is continuous.
Likewise |f"(x)| < 4 for x = 0 and also that
1}2% fli(x) =4
Hence again implies that f"' () is continuous and f"'(0) = 4.
On n —dimensional space let f(x) = (f;(x), ..., f,(x)),

My = suplf(x)],
M, = sup|f'(x)l,
and

M, = sup|f"(x)].
Just as in the numerical case,
there is nothing to prove if M, = 0 or M, = +ocor M, = +0o,
And so we assume 0 << M, < +wand 0 < M, < oo,
Let a be any positive number less than M,
Let x be such that | (x,)l = a
and let
1 ¥
TEESIH
Consider the real-valued function @{x) = u. f(x).
Let Ny, Ny and N, be the supremum of |@(x) [, l¢'(x)] and |e" (x)| respectively.
By the Schwarz inequality we have
(since |u| = 1) N, < Myand N, < M,
While,
Ny =z ¢(x) = If'(x)l = a.
We therefore have
a® < 4N,N, < 4MM,.
Since a was any positive number less than M,, we have
M7 < 4M, M,
i.c., the result holds for vector-valued functions.
Equality can hold on any R™, as we see by taking
f(x) = (f(x).0,..,0)

or

fx) = (Fx).f(x), o, f ()],

u =
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where f(x) is a real-valued function for which equality holds.

10.2.7 Example . Suppose f is twice-differentiable on (0,00), " is bounded on (0,0), and
f(x) = Dasx— 0 Provethat J (x) = Uasx — oo

Solution: We shall prove an even stronger statement.
If f(x) = L as * = o and /" (x) is uniformly continuous on (0, ),
then f'(¥) = Dasx — o0,
For, if not, let X, — o2 be a sequence such that f(x,,) = € = 0 for all n.
(We can assume that f(x,,) is a positive by replacing f with - f if necessary.)
Let & be such that

If“(x)—f’(_.v)laz:% if

lx =¥ < 4.

We then have

fo>3

if ¥ =51 <8, and so
|f(xn+8) — f*n — &) = 25 -
= de.

But, since de = 0, there exists X such that
1
|f(xj - Ll “:556

forall x = X.

Hence, for all large n we have

|f(xn + 8) — f(xn — 6)

S|f(rn+8) LI+HIL f(xn— 8]

= Je,

and we have reached a contradiction.

The problem follows from this result, since if " is bounded,
say [f " (X)[ = M, then If ' (x) — ' {y)| = Mlx — |, and
f" is certainly uniformly continuous.

10.2.8 Example . Formulate and prove an inequality which follows from Taylor’s theorem
and which remains valid for vector- valued functions.
Solution. There is a variety of possibilities, of which we choose just one:
Suppose f(x) ahs continuous derivatives up to order 1 on |&, b].
Then there exists ¢ € (a, b) such that
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f?! c
£ - P < 22| o= oy
To prove this assertion true for a vector-valued function f, we merely observe that it
holds for each scalar-valued function u. f if u is any fixed vector of length 1.
It is obviously true if |f(b) — P(b)| =0, and in all other cases it follows by taking

(f(B) — P(b)).

(4

B 1
1f(b) — ()]

10.3 SUMMARY:

This lesson introduces the concept of differentiation of vector valued functions,
exploring their definitions, theorems, and properties. Learners will understand how to
compute derivatives of these functions and apply differentiation to solve problems in
Physics, Engineering, and Mathematics. This Lesson highlights Differentiation of
vector valued functions, definitions and theorems, Properties of vector valued
functions, Examples and practice problems with solutions.

10.4 TECHNICAL TERMS:

R/

s Complex function

+»* Real Part

+¢ Imaginary Part

¢+ Differentiable function
+¢ Continuous function
+» Vector Valued function
+» Scalar function

¢ Magnitude

¢ Least Upper Bounds

+» Bounded

+» Linear Function

% Bounded Linear Function
¢ n-dimensional space

10.5 SELF ASSESSMENT QUESTIONS:

1.

2.

Suppose that f is a continuous mapping of [a,b] into R¥ and f is differentiable in
(@, b). Then there exists x € (a, b) such that |f(a) — fib)| < (b —a)lf (x)I.
Suppose a € R*, f is a twice-differentiable real function on (a, =), and My, M,, M, are
the least upper bounds of |f(x)|, |f (x)|.|f (x)| respectively, on (a,<0). Prove that
M7 < #MyM,.
Suppose f is twice-differentiable on (0,-), f is bounded on (0,), and f(x) = 0 as
x = o, Prove that f (x) = 0asx = o=,
Suppose f is defined in a neighbourhood of x, and suppose f (x) exists. Show that

r
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Flath)+flx—hl-2Ff(x)
h:

=f(x).

lim, _,,

10.6 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2™ Edition,
1985.

Dr. V. Amarendra Babu.



LESSON-11

THE RIEMANN-STIELTJES INTEGRAL

THE DEFINITION AND EXISTENCE OF THE

INTEGRAL

OBJECTIVES:

The objective of the lesson is to help the learners to understand

¢ To understand the Definition and properties of Riemann-stieltjes integral.
% To compute the Riemann-stieltjes integral for various functions.

STRUCTURE:
11.0 INTRODUCTION

11.1 THE DEFINITION AND EXTSTENCE OF THE INTEGRAL
112 SUMMARY

11.3 TECHNICAL TERMS

11.4 SELF ASSESSMENT QUESTIONS

11.5 SUGGESTED READINGS

11.0 INTRODUCTION:

11.1

In this lesson, the Riemann integral of a bounded real valued function is defined. A
necessary and sufficient condition that a function to be Riemann integrable is proved. It
is also proved that every continuous function defined on a closed interval [a,b] is
integrable over [u, I]. Further it is proved that if f is monotonic on [, &]and if e is
monotonically increasing and continues on [a, b] then f € R(a].

THE DEFINITION AND EXTSTENCE OF THE INTEGRAL:

11.1.1 Definition: Let [a. b] be an interval. By a partition p. of [a. b] we mean a finite set

P of points g, Xy, ..., X, such that
a=xp<x,<-..<x, =bh
Put Ax; =x;, —x;_y 1=1i=mn . Clearly, Ax; is the length of the sub interval

[x;-1 %]

11.1.2 Definition: Let f be a bounded real valued function defined on [a, b]

Corresponding to each partition P = {xg, x,,%5, ..., X,_4, x} of [a,b],
We put M; = Sup{f(x)/x€ [x,_;,x;]} and

m,; = Inf {flTﬂ € [xi-_l,xi-]] for1=i=<n.

Ulp. f) = Lz, MiAx; L(p. f) = Zizy mAx;

Put [* f dx = infU{p, ) ...... ... (1) and

2 fdx =Sup L(p,f) e rnn (2)
where the /nf and the Sup are taken over all partitions P of [a, b]

ff f dx is called the upper Riemann integral of f and
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_I": f dx is called the lower Riemann integral of f over [a, b].

If _j: fdx= _r: f dx then we say that f is Riemann integrable over [a, &]. And we

denote the set of all Riemann integrable functions by B and we denote the common
value of (1) and (2) by [ f dx or [* f dx.
11.1.3 Theorem: The upper and lower Riemann integrals always exist for every bounded

function.
Proof: Let f be a bounded real valued function defined on [a, b]. Then there

exist two numbers m and M such that m = f(x) < M forall x & [a, b].
Let P ={x,,x,,%5, ..., X, } be any partition of [a, b]

Put M, = Sup{f(x)|x,_; < x < x,}and

m, = Inf{f(x)|lx,_; = x<xjforl<i<n.

Thenm<m, <M, <Mforl<i<n

This implies Zj=y b, = Xi=y mAw; < Ein) MAw, = X7 MAw,
and hence m(b —a) < L(P,f) <= U(P,f) <= M(b—a)

This shows that {L(P, f)|P is a partition of [a,b]} and

{U(P,f)|P isa partition of [a, b]] are bounded sets.

Therefore Sup{L(P, f)|P is a partition of [a,b]} and
mf{U(P, f)|P is a parttdon of [a, b]} exist. That is _r: fdr and _I'ffdx exist.

Thus the lower and upper Riemann integrals of a bounded function always exist.
11.1.4 Definition: Let f be a bounded real valued function defined on [, k] and

let & be a monotonically increasing function on [a, 5] (Then & is bounded on
[a, b]. For each partition P = {x, x,,%5, ..., x,} of [a, b] and we write
Aa; = a(x;) — a(x,_,) Since @ is monotonically increasing on [a, b], Aa; =0

for1 =i <n.
Define M, = Sup{f(x)|x € [x, ,x,]}and
m; = Inf{f(x)|x € [x, g ]}for 1 =i =n

U(P,f,a) = L=y M{Aa; and L(P,f,a} = Li, m;Aa,

The sums U[P, f,a) and L(F, f, &) are respectively called the upper and lower
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Riemann Stieltjes sums of f with respect to & corresponding to the partition P.

_r: fdx =Inf{fU(P,f,a)|P isa partition of [a, b]} and

fﬁbfd:c = Sup{L(P,f,a)|P is a partition of [a, }]}

_ff f da is called the upper Riemann-Stieltjes integral of f with respect to a over
[a, b] and _]": f da is called the Lower Riemann-Stieltjes integral of f with respect
to e over [a, b].

If _]'f fda — _]": fda, we denote the common value by f: fda, orby f: flx)da(x),

is called Riemann - Stieltjes integral of f with respect to a over [a, b].

If _]": fda exists, that is _]": fda — _]’: fda, we say that f is integrable with respect
to @ in the Riemann sense. We denote the set of all Riemenn Stieltjes integrable

functions with respect to @ note that, by taking @(x) = x for all x € [a, b],the

Riemann integral is seen to be a special case of the Riemann Stieltjes integral.
11.1.5 Definition: Let P be a partition of [a, b]. A partition P* of [a, b]. is called a

refinement of P if P* contains P (i.e., if every point of P is a point of P¥).
Given two partitions P, and P, of [a,b]. We say that P'is their common refinement
if P* =P, UP,.
11.1.6 Theorem: If P is a refinement of P, then L(P, f,a) < L(P*,f,a) and
U(P*f,a) <U(P.f,a).
Proof: Let P = {x,, x,,%,, ....., X, } be a partition of [a, b] and P* is a refinement
of P.

First suppose that P*contains just one point more than P
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Let this extra point be x* and suppose x;_, < x* < x; for some i such that

1=i=<mn
Then P = {xg, Xy, e, X, X556, e, X0 b
Write m, = Irtf{f(x”x = [IE_L.‘IE]}
W, = Inf{f (x)|lx € x*,x;]} and W, = Inf{f(x)|x €x*, x.]}

Then clearly W, = m; and W, = m,

Consider
L(P*f,a) — L(P, f,a) = mhAa, + mAa, +- ...mAa,_. + W |al(x")—a(x_,)] +
Wy la(x,) —a(x*)] 4+ ... +m Az, — X1, m,Aa;

Thatis L(P*,f, &) — L(P, f,a) = 0 and hence L(P, f,a) < L(P*,f,a).
If P* have LiP, f,a; = L(P,f,a) contains k points more than P, we repeat this

reasoning k times and hence
Similarly we can show that U(P*,f,a) < U(P,f, a).

11.1.7 Theorem : [’ f dee = [ f da
Proof: For any partition P of [a, b], L(P, f,a) < U(P,f,a)

Let P* be the common refinement of two partitions P, and P, of [a, b].
By theorem 9.1.6, L(P,,f, &) < L(P*,f,a) < U(P*,f,a) = U(P.f,a)

Then L(P,f,a) < U(P,, f.a) ... .. ...(1)

If P, is fixed and the Supremum is taken over all I; in (1), we have
[P fda <UP,f,a) ()

If the Infimum is taken over all B, in (1), we have

[* fda < [°f da.

11.1.8 Theorem: f € R(a) on [a, k] if and only if for every £ = 0 there exists a
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partition P of [a, b] such that U(P, f,a) — L(P,f,a) < &.

Proof: Assume that for each £ = 0 , there exists a partition P of [a, b] such that
U(P,f,a) —L(P,f.a) < e.
Let £ = 0. Then there exists a partition P of [a, b] such that

U(P,f,a) —L(P,fa) < g.........(1)

By Theorem 11.1.7, L(P, f,a) < f:fdg < f:f da < U(P,f,a)
Then 0 < [ fda — [° fda <

Since £ = 0 is arbitrary, we have f: fda = u": f da
Therefore f € R(a). Conversely assume that f € B(a).
Then ” f da = [’ f da = [* fda.

Let £ = 0. Then _|": fda 4= ,is not a lower bound of the set
{U(P,f,a)|P is a partition of [a, b]}. Then there exists a partition P,, of [a, b]

such that U(P, f,a) < [ fda += .......(2)

Now f: fda — = is not an upper bound of the set

{L(P,f,a)|P is a partition of [a, b]}. Then there exists a partition P,, of [a, b]

such that [” fde —= < L(P, f.a)

This implies that [ fda < L(P.f, @) + = ... .......(3)

Let P be the common refinement of two partitions P, and F, .
By Theorem 11.1.6, and by (2) and (3) we have

U(P.f.a) < U(P,f.a) < [ fda +i<L(Byfa)e<L(P.fia) +e



Centre for Distance Education 11.6 Acharya Nagarjuna University ‘

This implies that U(P, f,a) — L(P, f,a) < &
Thus for given = = 0, there exists a partition P of [a, b] such that
U(P,[,u) —L(P,[,u) < &

11.1.9 Theorem: If U(P, f,a) — L(P,f,a) < & for some partition P of [a, ] and

for some & > 0, then U(P*,f,a) — L(P*,f,a) < & for any refinement P* of P.
Proof: Suppose P for a partition of [e, b] such that U(P, f,a) — L(P, f,a) < & for
some £ = 0. Let P* be arbitrary points of P.

Then by Theorem 11.1.6.

L(P,f,a) = L(P*,f,a) =U(P*,f,a) =U(P,f.a)
This implies that U(P*,f,a) — L(P*,f,a) < e.
11.1.10  Theorem : If U(P, f,x) — L(P, f, @) < & for some partition P of [a, b]
and for some £ == 0. Let s, t, be arbitrary points in [x,_,,x,]for 1 < 1 < n.

Proof: Let M; = Sup{f(x)|x € [x,_, x;]} and
m; = Inf{f(x)|x € [x;_ x|} for 1< i <n.

Then m; < f(s) < M, and m, < f [:sj) < M, This implies  that
f(s;) = f(t;) € [muM]for1 < i <m.

This implies that |f(s;) — f(t,)| < (m,— M) for1<i<n
Consider |f(s;) — F(t;)|Az; = Z%, (M, —m,) Aa,

T MAa, — X", mAa; = U(P,f,a) — L(P. f.c)
Therefore X7, |f(5ij - _I":f(t:-)| Aa; < ¢

11.1.11 Theorem: If / € R(w)and U(P, [, u) — L(P.f,ua) = & for a partition P of [u, I']
and for some £ = 0 if t;is an arbitrary pointin [x;_;,x;] for 1 < i < n then

5" freosre] <

Proof: Suppose f € R(a)
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Assume U(P, f,a) — L(E, f,a) < & for a partition P of [a, b] and for some
g = Qif t,is an arbitrary pointin [x;_;,x;]for 1 < i <n.

Write M, = Su,p{f(x) |x € [xi._in]} and
m, = “?-f{f(f)|ﬁ’ £ [r‘-_iJrE]]for 1=i=n

Nowrm; = f(t,) =M, for1=i<n
Then X', m,de; < 2%, (¢ )Aa, < X1, M Aa,
L(P.f,a) = XL, f(t)Aa, < U(P,f,a) o oo (1)

Since f € R(a), we have _I': fda = _I":fda: = .rffd“

This implies that L(P.f.a) < [ fda < U(P.f.@) . ......(2)
From (1) and (2), we have

Zi= f(t)Aa; — f: fda <= U(P,f,a) — L(P, f,a) < e (By assumption) and
_I;h fda — X2, f(t)Aa; — f: fda < £ and hence

[Ty 2 £ () B, — 7 fda| < e
11.1.12 Theorem : If f is continuous on [a, b] then f € R(a)on [a, b].
Proof: Suppose f is continuous on [a, b]. Let £ = 0,
Since a = b and @ is monotonically increasing on [a, b]. We have a(a) < x(b)

This implies a(a) — a(b] =0

&
al(tl—alal+l’

Putn, = then 1, = 0.

Since f is continuous on [a, b] and since [a, b] is compact, by known theorem, f is

uniformly continuous [, b]. Then there exists & = 0 such that
|f(x)-F(£)| < mg woeeee eeen o (1), whenever x, t € [a,b]and |x —t] < 6.
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Since & = 0, by Archimedian principle, there exists a positive integer n such that
nd > b a.
tib—a)

n

Write x; = a + ,0<i<n.

Then P is a partition of [a, 5] such that Ax; — x; —x;_;for1 =i =n

X, t € x;_y,x],wehave [x —t] = Ax; << &

Then by (1), |[f(x)-F(£)| < g e vre veen(2)

Write M, = Sup{f(x)|x € [x, ,x.]}and

m; = Inf{f(x)|x S [xi-_in-]] fori=i=mn.

Since f is continuous on [a, b], Since f is also continuous on [x;_y, x;] Then by
Theorem there exists g;,q; € {x;_,,x,) such that f(p) = m, and f(gq) = M, for

1==i=n

Since p;,q; € [x,_;,x,], by (2), we have | f(p)- £ ()| < g v vee o (3)

Consider |M; m;| = |f(p;) f(aq;)| <mnyforl<i=nBy(3)

=M, -m; <mppforl<i<n.....(4)

Consider U(P, f,a) — L(P, f, @) = iz, MiAa; — Zi=) m Aa;
n n n

= Z (M; —m;)Aa; = Z Neda; =1, Z Aa;
i=1 i=1 i=1

e(a(b) — ala))
a(b)—a(a))+1
So for given £ = 0, there exists a partition P of [a, b] such that

==-m[w[;b;1—cxr;al)=[

I1(P,f,a) — L(P, f,@) < = Then by Theorem 11.1.8, f £ R(a).

Thus every continuous function on [a, b] is Riemann Stieltjes integrable over
[a, B].

11.1.13 Theorem: If f is monotonic on [a.b] and if & is monotonically increasing
and continuous on [, b], then f & R ().
Proof: Suppose f is monotonic on [a, b] and & is monotonically increasing

and continuous on [, b].

First we show that to each positive integer n there exists a partition



[Analysis — I 11.9 The Riemann-Stieltjes.. |

P ={xpx,%5, c..,x,} of [a,b] such that Aa, = a(x;)—alx,_;) = Mfor

1=1i<n.

Let n be a positive integer.
__ xlbl-awla)
Putd = —Q
Write €, = a{a) —if for1 < i < n.

Then €, = ala) +15; C, = ala) + 25 and

C,=ala)+né = a(a) +a(b) —ala) = a(b)

Nowa(a) < €, < C, < = ....< C, = a(b)

Since @ and continuous on [a. b] and ala) < €, < a(b)

by Theorem 11.1.18, there exists x; € (a, b) such that a(x,) = C,

Now C, = alx;) < €, < a(b) again by Theorem 11.1.18, there exists x, € (a, b) such
that a(x,) = C,

Continuing in this way for i = 3,4, ......,n — 1, we have xg, x4, ... ....,x,_; such that
a<x <x,<-..<x,_;<banda(x,)=C forl<i<n.

Put 2y — wamd x, — & Then P — {x g, y,% 0, vyt } 18 a partition of [u,b] and

Aa; =al(x,)+ a(x,_,)=C,—C_, =86= albl-ala)

B

nf':b}—nf':n}

Therefore Aa; = fori<i<n

So, for each positive integer n, we have a partition P = {x4, x,,%X5, ....., X, } of [a, b]

__wibl—ala)

such that Aey =———forl =i =n.. ... (1)

Lete=0
Since f is monotonic on [a, b]. We have either f is monotonically increasing or
monotonically decreasing.

Case (i): Suppose f is monotonically increasing. Then f(a) < f(b).

Since £ = 0, by Archimedian principle, there exists a positive integer 7 such that

ne = [rx[b] - fx(ﬂ”(f(b) - f(a))
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el b} alal

This implies Aa, = (F(B) = F(@)) < £ e (2)

For this positive integer n, by(l) we have a partition P = {xg, x,,%5, ... x,}  of

[a, b] such that Aa, = sb)alal for1 < i < .

n

Put M, = Snp{f(x)|x & [x;_ Lx-]] and
m; = Inf{f(x)|x € [x;_ x|} for 1<i<n

Since f is monotonically increasing we have m; = f(x,_,) and M; = f(x;]
Consider U(P, f,a) —L(P.f,a) = Z}x | M;Aa;, — 27—, m;Aa;

= T, (M, —m)Aa, = T, () (Fx) + £(xim0))

= (ST L (F () + F(xims))

n

albl—alal
= (*="2)(F(@) + (b)) < & by()
Therefore U(P. f.ax) — L(P.f.a) < &
Case (ii): Suppose f is monotonically decreasing. Then f(b] =< f(a).

Since £ = 0, by Archimedian principle, there exists a positive integer 1 such that

(222 (F(@) = F(B)) < & v e (3)

For this positive integer n, by(l) we have a partition P = {xg, ¥4, %5, ..., X} of
[a, b] such that Aa, = alb)alal g1 <i<n.

n

Since f is monotonically decreasing we have m; = f{x,)and M; = f{x,_,)

Consider U(#, f,a) — L(F.f,a) = L, M;Aa; — Lo, m;Aa,
=35, (M, - m)aa, = i, () (F(xn) — F(x)
= (I (F () + F(xim)))

_ (MJ[}T[Q] + f(b)) < £ by(3)
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Thus in any case, for £ = 0, there exists a partition P of [a, b] such that
U(P,f,ﬂf) - L(P,f,ﬂfj < £

Then by Theorem 11.1.8, f € R(a).

11.1.14 Theorem: Suppose f is bounded on [a, b]. f has finitely many points,

of discontinuity on [a, b] and & is continuous at every point at which f is
discontinuous. Then show that f € R{a).

Proof: Suppose f is bounded on [a, b] and f has only finitely many points of
discontinuity on [a.b] and @ is continuous at every point at which f is
discontinuous.

Let £ = 0. Put M = Sup{|f(x)||x € [a, b]}

Let E be the set of points at which f is discontinuous. Then E is finite.

SoletE ={c.,cy, eeuun.., €, ) and assume that ¢, < ¢, < ... < g,

Write ——— then ¢ = 0
elbl—alal+4HEM+1

Since a is continuous at c, there exists §; > 0 such that |a:[c}-) - cx(cj| < g, whenever
le; —¢| < 6;forj= 1,2, ...k (1)

Take &, = min{t’i}-,cjﬂ,—s}., 1<j< k}

Now choose 1, and o such that ¢; — 2L < <v;+ ? forl=j=n

1 :
Now we will show that [1;v;]'s are disjoint intervals.
For this, it is enough if we show that v; <u;+ 1

Now consider ¢,,, — ¢ = &, And hence v, < u .,

o &g 8,
This implies v; < ¢; + 2 ST and hence v; < 1

This shows that [u,v,]'s are disjoint.

Since |¢; — v;| < &; and |¢; —u;| < &, by (1), we have
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|a:[cj] - cx[u,_,-_“]| < £, and |a:[cj-) - a:f_uj_“]| g forisj=<k
This implies that |a(v;) — 2(u;)| < 2¢, for 1 < j < k
Consider ¥_, (e« [:uj] — a’(u_r)) = YK 2e =2g.

So, {[u}-, u}-] 1=j= k} is a finite class of disjoint intervals such that

[uj} uj.] C [a. b] and this class covers E and the sum of the corresponding
differences cx[v}-) — a(u;) is less than 2ke,.

Also it is clear that every point of E n [a.b] lies in the interior of some [u,}-, v}-]‘

Write K = [a, b]\ Uk, (w;, v;)
Then K = [a,u,] U [v, u,] U [vy,ug] U .. oo U [y, b]
It is clear that K is compact and f is continuous on K

By Theorem, 11.1.4, f is uniformly continuous on K. Then there exists & = 0
such that |f(s) — f(t)| < £, whenever |s — t| <&

Now form a partition P = {xq,x,%5, ..., x,,} of [a, b] as follows: Each u; occurs
in P. No point of any segment (1, v;) occurs in P. If x,_, is not one of the u; then

Ax,

=X, —x_y =4,

Write M; = Sup{f(x)|x € [x,_, x;]} and
m; = Inf{f(x)|x € [x;_ x|} for 1< i <n.

Assume x;; = v, forl=j=k

If x;, = v, and x;;, = v, by the definition of P u, = x;; — land u, = x;; — 1......etc.
Therefore forany r € [1,2 .......... n}. x,. # x;; implies that x,. = v; and x,_; = u,.
Also forany r € {1,2........ n}, —M < m, < M, < M. This implies that M,. — m,. < M.
Letr € {1,2........ n\{iyig e oeen B} Thenx o, x, €K and [x, —x,4| <6

by the definition of P .
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Since f is continuous on [x,_,,x,.] by Theorem 11.1.5 there exist s,., t,. € [x,_,,x,.]
such that f(s,) = M, and f(t,) = m. Consider |s,-t,| < |x, — x,_,| < &. This
implies that |f(s,) — F(t, )| < =,.

Consequent M, —m,. = |M_—m_| < g.

Aa; = rx[xi.__:] - a(_x:’._—l) =a(v,) —alu.) < 2¢

Aa; = alx;) —alx, ) = a(v,) —a(uy) < 2¢

Aa; = al(v,)— alu,)
So forany v € {iy,1q, . cewn, iy LA, < 22,

Consider I7(P, f.a) — L(P.f, ) = X, M A, — X, m Am,

=YL (M, —m)Aa, =X, (M, —m)Aa,r E{1,2 e v e e P\
" n

PR S E(M,, —m,)Ax; < slz Aa, K +2M.2em €{i |, is, cnnnn iy
i=1 =1

=z,(a(b) —a(@)) + 4kMz, < & ((a(b) —a(a)) +4KM + 1) =&

Thus for £ = 0, there exists a partition P of [a, b] such that

Then by Theorem 11.1.8, f € R{a).
11.1.15 Note: If f and @ have a common point of discontinuity, then f need not be in R ().

11.1.16 Example: Define [—1.1] = R,by a(x) = 0,if » < 0 and if @(x) = 1,if ¥ > 1 and
1
a(x) =5,

Let f be_a bounded function on [—1,1] such that f is not continuous at 0.

Now we will show that f € R{a] on [—1,1].

Lete = 0

Since f € R(e) there exists a partition P = {xg, X, %4, ..., X, } of [—1,1] such that

U(P,f.a) —L(P,f.a) < %o (1)
Now, either 0 € Por0 &€ P
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Suppose @ € P. Then x;_, <0 < x,forsome i suchthat1 <i <n
Then Ag; =0for1 <j<i—1Aaq;,=0fori+1<j<n
And Ae; = a(x;) alx,_;)=1 0=1.

Write M; = Sup{f[xﬂx (= [xE_LxE-]] and
m; = Inf[f(x)|x C [xi-_in-]] fori+1=j=n

U(P,f,a) =L MAa;= M; and L(P, f,a) = T, m;Aa; = m,

By (1) we have M; —m;, = U(P,f,a) — L(P,f,a) <

Ba |

~(2)
Choose 8 suchthat 0 < § <~ min {—x,_,,x,}. Thenx,_. < 8§ <& < x;,,
Suppose x € [—1,1] such that |x — 0| < §.Then-§ < x < &.
This implies that x,_;, < x < x,,,
Ifx,_, =x =0=x;thenm, < f(x)< M,and m, = f(0) = M,
|f(x) = FO}] = M; — m; < (M; —m,) + (Mg — myyy) < & (by 5)
Ifx, =0<x<x,,thenm;y; <f(x) =M, andm,; <f(0) =M,
This implies that |f(x) — F(0)| < M,,; — m,,, < £ (by 5)
Therefore f is continuous at 0, which is contradiction.
So in any case we have contradiction.
Hence f € R{a) on [—1,1].
11.1.17 Theorem: Suppose f € R(a) on [a, b],m < f(x) < M for all
x € [a, b], @ is continuous on [m, M] and h{x) = ¢(f (x) Jon [a, b]. Then h € R(a) on
[a, b].
Proof: Suppose f € R(a)on [a,b].m < f(x) <M forall x € [a, b],p is

continuous on [, M] and k(x) — @(/ (x))on [a, b].

Let £ = 0. since ¢ is continuous on [m, M], We have ¢ is bounded on [m, M].
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Then there exists a § = 0 such that |@(s] — @(t)| < £; whenever s, t € [m,M] with
|s — t] < &,.

Choose & such that 0 << § < min{&,, =}

Then for any s, t € [m,M] with |s —t| < &, wehave |@(s) — @ ()] < & o o (1)
Since f € R( ) there exists a partition P = {x, x,,%,, ....., x, } of [a, b] such that
UP,f,a) —L(P,fa) < 8%.........(2)

Write M; = Sup{f{x)|x € [x,_; = x;]}and m, = Inf{f(x)|x € [x,_; = x,]}and

= Sup{h(x)|x €[x,_; = x;]}and m,* = Inf{h(x)|x € [x,_, = x,]] for
1 = i = n. (Since A is bounded)

Put £ ={i € {12 .ccocs e eenr . m}/M; —m; < &} and
B={e{1,2....cccc. .....n}/M, —m, =85}
Then AUB={12...ccce o eo..mt}

First we show that |f(x) — f(¥)| = M, —m, for all for x,¥ € [x,_.,x;]for 1 = i = n.
Let x,¥ € [x;_y,x;]. Thenm = m; < f(x) <M, = M and
m =m; < f(y) < M, < M implies that f(x),f(¥) € [m, M] and
Iflx)— fWl= M, —m,
Next we will show that ¢ € 4 and x,¥ € [x;_,, x;].
Then |f(x) — f(v)I= M, —m, < §and f(x),f(y) € [m, M]
This implies that |@(f(x)) — @(f(¥))| < & By(1)
Consequently h(x)-i(y) < & oo e (3)
Consider M,* — m,* = Sup{h(x)|x € [x,_,.x]: — Inf{h(¥) |y € [x,., — ]}
= Suph(Dlx € [xpx, ]} + Sup{—h()x € [xe_y, x.]}

= Sup{h(x) — h(y)lx,y € [,y %]} < &, (by(3))
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So i €A implies that M," —m," < g, ... .. (4)
Next we will show that i € B implies that M,* —m,* < 2k.
Suppose ¢ € B. Forany x, ¥ € [x;_y,x;].

Consider

|h()-h()| = |o(f(x) = o(fWM)] = |e(F())| + |e(F )| =k + k = 2k.
Therefore M,* — m,* = Sup{h(x) — R(¥)|x,¥ € [X,—p, %,]} < 2K .. e . (5)
Consider 8%, g Aa, = 3,5 6Aa, < T,cg(M, —m.)Aa

< T, (M, —m,)ba, = U(P, £,a) — L(7, £, @) < 6% (by(2)

This implies that 8 I, .5 Ae, < 62 and hence I, Act; <6 .. ... ... (6)

Now consider U(P, h, &) —L(P, h,a) = -, (M," — m;")Aa;

= Z['M,-* —m;")Aa; + ZfM,-"’ —m;")Aa;

ied i3
<& 2ieala; + 2k X, g Aa, (By (4) and (5))

<& X Aa, 4+ 2k, 5 Aa; < &, (a(b) —ala)) + 2kf By (6)
< &,(a(b) — a(a)) + 2ke,

= &, (a(b) — z(a) + 2k)

=g (a(b) —al(a) +2k+1) ==
Thus for given £ = 0, there exists a partition P of [a, k] such that

U(P,h,a) —L(P,h,a) < & and hence h € R(a) on [a, b].

11.1.18 Problem: If f(x) = 0 for all irrational x and f(x) = 1 for all rational x prove that
f€R(a)on [a b]forany a<b.

Solution: Let a, b be real numbers such that & < b,

Let f: [a, b] —= R be the function defined by f(x) = 0 for all irrational x and f(x) = 1
for all rational x.
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Let P = {xg, x,,%5, ..., X, } be any partition of 'a, b]

Write M, = Sup{f(x)|x € [x,_;,x,]] and m; = Inf{f(x)|x € [x,_,,x,]] for
1<i=n.

Then M; = land m; =0 for L = i = n.
UP,fa) =X MAx,=b—aand L(P,f,e) = X, M;Ax, =0
Then f:fdx = Sup{L(P, f)|P is a partition of [a,b]} =0
And f:fdx =Inf{U(P, f)|P is a partition of [a,b]} =b—a
Therefore f: fdx = _I'ff ax and hence f & R(a) on [a,b].
11.1.19 Problem: Suppose f = 0, f is continuous on [a, k] and “'f fdx
prove that for all x € [a, b].
Solution: Suppose f = 0, f is continuous on [z, b] and _]": fdx=0

If possible suppose that f(c) # 0 for some ¢ € [a, b], then f(c) = 0. Since f is

continuous on [z, b], f is continuous at ¢. Then there exists § = 0 such that
f(x)-f(c) < f(c) euuvn... (1) whenever x € [a, b] with |x —¢| < 4.

Now we will show that f(x) = 0 forall x € (¢ — &,c + &). If possible suppose

that f(x) = 0 forsome x € (¢—&,c+ &§). Then |[x —¢| <&, and

by (1),

fx)=f(e) < f(e).

Since f(x) = 0, we have f(c) < f(c), a contradiction.

So f(x) = 0 forallx € (c —&.c + 4§).

Since f(x) = 0on [a,b]. We have f(x) =0 forall x £ (¢ — §,¢c + §).
This implies _I':j; f(x)dx = 0 and hence _[': f(x)dx # 0 a contradiction.

So f(x) = 0forall x € [a, b].
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11.1.20 Problem: Suppose « increases on [a, b] and & < 5 < b and « is continuous
ats, [(s) — 1and [(x) #0if x = s. Prove that / € R(«) and that [ f dar =0.
Solution : Let P = {x,, x,,%,, ....., X, } be any partition of [a, b].

Then x,_, < s < x,for some i suchthat 1 < i < n.

Write M; = SIr,p{fixj |x [S [x}-_Lx}-]} and
m; = Inf{f(x)|x € [x;_yx;]]for1 < j < n.

Then M; —ofori<j<nandj=+iand M;=1landm =0forl <j<n
Now L(P,f,a) = 0and U(P, f,a) = M;Aa; = a(x,) —a(x,_,) =0

Therefore _I': fda =Sup{L(P, f,a)|P isapartition of [a,b]} =0
And _Iff da = Inf{U(P, f,a)|P isa partition of [a,b]} = 0

Now we will show that _I"E fda—0

If possible suppose that _If f da = 0.Choose £ such that 0 < £ < _I'f fda

Since ¢ is continuous at =, there exists & = 0 suchthat 0 < s — 8§ < s <=+ & < band
a(s) —a(x) <= .......(1) whenever |s — x| < 6.

Takex, =a,x; =5 _, %,

5
=51 _,x;=h

Then P = {x4, %,,%4, ..., X, } is a partition of [a, b]and x;, <5 < x,

Clearly,ls—x.,|=|s—(s—§) =§:‘:6
Thenby (1) la(s) — ()] < £

Clearly M, =0, M, = 1,M; = 0

Consider |5 — x,| = |s _(5_9 =§{5

Thenby (1) |a(s) — e(x, )] =‘:§
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Consider |a(x,) —a(x)| < la(x,) — als)| + |la(s) —a(x,)|< %‘i'i? =&
Therefore |a(x,) —al(x,)|= & .. ... (2)

U(P.f.a) = Lz MAa; = MyAa;(x)) — a(x)) < &

Thus there exists a partition P of [a, b] such that U{P, f,a) < ]'f f da.
Which is a contradiction.

So _]'ff da = 0 and hence f:f da = _I'ff da =0

Consequently, f € R(a) on [a, b] and f: fdx=0.

Short Answer Questions

1. Define the upper Riemann integral and lower Riemann integral of a bounded function f
defined on [a.b].

. Show that [*  da < [* f da

(5

3. If f(x) =0 forall irrational x and f(x) = 1 for all rational » prove that f & R{a) on
[a,b] forany a < b.

Model Examination Questions

[y

. Show that f € R(e)on [a, b] if and only if for every £ = 0 there exists a partition P of
[a, b] such that U(P, f,a) — L(P, f, &) < =.

2. If f is continuous on [a, b] then show that f € R(a) on [a.b].

3. If f is monotonic on [a, b] and if & is monotonically increasing and continuous on [a, b],
then f € R(m).

=

. Suppose f is bounded on [a, b].f has finitely many points, of discontinuity on [a,b] and
a is continuous at every point at which f is discontinuous. Then show that f € R(a).
5. Suppose @ increases on [a,b] and a < 5 < b and @ is continuous at =, f(5) =1 and

f(x) #=0ifx # s Prove that f € R(a) and that _|": fda =0.

Exercises

[y
.

Define [-1,1] = R, by f(x) = 0,if x < 0 and if f(x) = 1,if x > 0 and Let f be a
bounded function on [—1,1]. Show that f £ R(f) ifand only if f{0 +) = f(0) and that
then [ f dp = 0.
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11.2

11.3

Answers to Short Answer Questions:

For 1 see definition 11.1.2
For 2 see theorem 11.1.7
For 3 see problem 11.1.18

SUMMARY:

This lesson delves into the concept of the Riemann-Stieltjes integral, covering its
definition, properties, and applications. Learners will gain a comprehensive
understanding of the integral's existence and computation for various functions. This
Lesson covers Introduction to the Riemann-Stieltjes integral, Definition and existence
of the integral, Proofs of key theorems, Computation of the Riemann-Stieltjes integral
for various functions, Practice problems with solutions and exercise problems.

TECHNICAL TERMS

% Interval

+ Partition

% Supremum and Infimum
“*Riemann Stieltjes integral
“*Bounded function

¢ Monotonic

%+ Upper and Lower Riemann Stieltjes integral
** Refinement

¢ Compact

+ Continuous

¢ Uniformly Continuous

11.4 SELF ASSESSMENT QUESTIONS

1.

2.

5.

If [ is monotonic on [t, I] and if e is monotonically increasing and continuous on
[a, b], then f € R(a).

Show that f € R() on [a. b] if and only if for every £ > 0 there exists a partition P
of (@, b] such that U(®, f,a) — L(F,f,a) < &,

If £ is monotonic on [&, b] and if & is monotonically increasing and continuous on
[a, k], then f € R(a).

If f(x) =0 for all irrational ¥ and f(x) = 1 for all rational x prove that f & R(a)
on [a,b]forany a < b.

Show that [* £ da < [ f da.

11.5 SUGGESTED READINGS:

1.

Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International

Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition, 1985.

I. V. Venkateswara Rao



LESSON-12
PROPERTIES OF RIEMANN STIELTJES

INTEGRAL

OBJECTIVES:
The objective of the lesson is to help the learners to understand

¢ To understand the Definition and properties of Riemann-stieltjes integral.
% To compute the Riemann-stieltjes integral for various functions.

STRUCTURE:

12.0 INTRODUCTION
12.1 PROPERTIES OF INTEGRAL
12.2 SUMMARY
12.3 TECHNICAL TERMS
12.4 SELF ASSESSMENT QUESTIONS
12.5 SUGGESTED READINGS
12.0 INTRODUCTION:
In this lesson the properties of Riemann-Stieltjes integral are studied. If R (a, b) denotes the set
of all real-valued functions f defined on [a, b] such that f € R(e&) on [a, b], then it is proved that
f+gand cf arcein R {a, b) forany fg € R, (a,b) and for any real number ¢. This shows that

R_(a,b) is a vector space over the field of real numbers. Further it is proved that if @ << s < b, f is

bounded on [a, b] f is continuous at s and e¢(x) = I{x — s), then _I":J fdx = f(s).
12.1 PROPERTIES OF INTEGRAL

12.1.1 Theorem: If f; € R(a) and f; € R(a)on [a, b]then f; + f; € R(a) and
[ +R)da =] fida+ [ f,da.
Proof: Suppose f; € B(a) and f; € R(a) on [a, b]
Putf=f +£
Letz= 0
Since f, € E(a) and f, € R(a) on [a, b], by Theorem 11.1.8, there exist partitions P, and P,
[a, b]suchthat U(P,, f,, &) — L(P,.f,,a) <=
Let P be the common refinement of P, and P,. "E'hen by Theorem 11.1.9.
U(P,f,, &) — L(P, f,, &) =:§ ......................... (1)
And U(P, f,,e) = L(P,fo,a) <= .ooiiiins )
Inf{f(xﬂx (S [xi-_in-]}
= Inf[fl(x)|x [S [xi-_in-]}-I- Inf{f: (x)|x € [xi_in]} ........................ 3)
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SI*PU(XHX € [xi—'l,xr‘]]
< Sup{f, (x)|x € [ 2]} + Sup{fo () |x € [y 2] oo 4)
From (3) and (4), we have
L(P,fla) + L(P.fo,a) < L(P,f,a) = U(P,f,a) + U(P,fi,a) + U(P, f,, a)
This implies U(P, f,a) — L(P, f, a)
< U(P,fy,a)— L(P.f,a) +U(P,f,,a) — L(P,f, )
<+ < eBy(l)and (2).
Thus for Since = = 0, there exists a partition P of [a, &] such that
U(P,f,a) — L(P,f,a) < =.
Therefore f € R(a) Thatis f; + f; € Rla).
Next we will show that _f: (i +£)da = _f: fida + _f: f> da.
Let £ be an arbitrary positive real number.

Since f,f> € R(a) on [a, b], f: £ da = _l"ffl dae = f: fi da and

[* fda = [*f, da = [* £, da.

Fori = 1,2 _|": f} da + ; is not a lower bound of the set I [:F‘, I a::l isapartition of
[, B]. '

Then U [F}, fir a:) < _]": f;da + = for some partitions P, of [a, b] for

j=1,2, ... )

Let P be the common refinement of P, and P,.

Then U(P.f.a) < U(P,.f.a) < [0 f;da+for j=12....

Now )

[ fda <UP,f,@) U(P.fa)+U(P.f,a@) < U(PLf, @) + U(Pyfy ) <
L frda 454 7 foda + % (5)

This implies [” f dae < [7 f, da + [ f, da +

Since £ > 0 is arbitrary, we have _I":fdcr < f: f, da + f:fz da ... .....(6)
Forj=1,2 f: f;da— % is not an upper bound of the set L[P, [ rx) isapartition of
[a, b].

Then _I": f; da —% = L[:P}-, fir a ) for some partitions P, of [a, b]for j = 1,2, ...

This implies that

[ fida—S+

[P frda—2<L(P.fa)+L(P.fra) + L(P.f,a) < [  fda....(7)

Therefore [ f, da + [ fyda —¢ < [ f da

Since £ = 0 is arbitrary, we have
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[ fida+ [’ fida< [ fda......(8)
From (6)and (8), [ f da = [ f, da + [ f, da
Then [ (f, + f,) da = [ f, da + [ f; da.

12.1.2 Theorem: If // € R () on [, L] and ¢ is any constant, then ¢ € R (eejon [, ]
and_l'f cfda =c f: fda.
Proof: Suppose f € R(a)on [a. b] and c is any constant.
If ¢ — 0, then clearly cf € R ()
Let £ == 0. Suppose ¢ = 0
Since f € R(a) on [a, b], there exists a partition P = {x, x;,%5, ....., x,.} of [a, b] such
that U(P, f.a) — L(P.f.a) < =
Write M; = Sup{f(x)|x € [x,_, x;]] and
m; = Inf{f(xﬂx [S [xi-_lei.]] forl=i=n.
Consider Sup{(cf)(x)|x € [x;_yx;]} = Sup{cf (x)|x € [x._y x|} = M,
Similarly, I:rtf{(cf) (x) |x S [xi-_in-]]- = Inf{cf(x)|x S [.xi-_in-]} = cm, for
1=i<n.
Consider U(P, cf ,a) — L(P,cf,a) = X1, cM,Aa; — 27—, cm Aa,

=c [i MAe, — Z mi&rxil

i=1

— U, [rw) = L(P. [ )} < r:.; .

Therefore, U(P, cf, a) — L(P,cf ,a) < & for some partition P of [a, b]
And hence cf € R(a)

So in this case cf € R{a).

Suppose ¢ < 0then —¢ = 0.

Since f € R(a), there exists a partition P of [a, b] such that

U(P,f,a) —L(P,f.a) < _ic

Consider SILP{(Cf) (x)|x £ [xi-_in-]]- = Sup{cf(x)|x € [xi-_in-]]
= —c swp{(-H@|x € [xy 1]} = M,

Similarly Inf{(cf)(x) x € [x_y x|} = Inf{cf(x)|x € [x;_ x]]
= —c Inf{(=F) ()| € [x_y x;]} = em,

This implies U(P, cf ,a) = L(P, cf , )

Similarly we can show that L(P, cf,a) = ¢ U(P,cf, a)

Consider U(P,cf ,a) — L(P,cf,a) =c L(P,f,a) — c U(P, f, a)
= —c{U(P,f,a) — L(P.f, @)} < —c.ic =

Therefore U[P, cf,a) — L(P,cf,a) < & for some partition P of [a, b]
And hence ¢f € R(u).
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Thus in any case cf € R (e).
Next we will show _f: cfde = ¢ _[: fda

Since f € R(e)., we have _r: cf da — f: cf da = _I'f cf dea

If ¢ = 0, then dlearly [* cf da = ¢ [ f da

Since cf € R(a), we have _I': cf da = _I": cf da = _rfcf da
Suppose ¢ < 0
Then U(P, cf ,a) — L(P,cf,a) and L(P, cf,a) = c U(P,cf, a) for any partition P of
[a, b].
Consider f: cf da = ]'f cf da
= Sup{L(P,cf,a)|P is a partition of [a, b]}
= Sup{clU (P, f,a)|P is a partition of [a, b]}
= —c,Sup{—V(P, f,a)|P is a partition of [a, b]]
= —c,Inf{U(P, f,a)|P is a partition of [a,b]}
=, InflU(P f,a)|P is a partition of |a,b]}
=r fﬁbfdrx
Therefore u": cf da = ¢ _I": fda
Similarly we can prove for ¢ = 0, we have f: cf dae = c_]": f da

Thus in any case _]": cf da = cfﬂbfdrx.

12.1.3 Theorem: If f}, f, € R(a)on [a, b]and f;(x) < f,(x)on [a, b] then
[ fida < [T f, da.
Proof: Suppose fi.f. € R(a)on[a b]andf,(x) < f;(x) on [a, b]

Let P = {x, x,,%,, ....., X, } be any partition of [a, b]

Write M, — Su,p{fl(x) x € [:xi-_in-]] and

N, = mp{f: (x)|x [S [xi-_in-]} forl1=i=n.

Since fi(x) < f5(x) forall x € [a, b],

we have fi(x) < f5(x) forall x € [x,_, x;]for1 < i< n.

Then M; = N;for1l =i <n.

This implies that U(P, f;, @) < U(P, f;, a)

Consider jﬁ" fida < _I'ff: de < U(P, f.a) < U(P, f,, a)

This shows that _l": f, de isalower bound of {U (P, f,, &) |P is a partition of [a, b]}.
Therefore f: fida = _If foda = u“: f; da

Thus [7 £, da < [ f, da.
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12.14 Theorem: If f € R(a)on [a,b]anda < ¢ < b,then f € R{a)on [a,c]and on [c, b] and

[[fda+ [ fda= [ fda
Proof: Suppose f € R(a)on [a,b]landa <ec = b
Lete= 0
First we show that there exists a partition P of [a, b] such that ¢ € [a, b]and
U(Q.fra) —L(Q.f.a) < &
Since f € R(a), there exists a partition @ = {x4, %, %5, ..., X, } of [a, b] such that
U(Q . foa) —L(Q.fra) <¢
Since ¢ € [a, b], wehave either ¢ = x; or x,_; < ¢ < x; for some i suchthat 1 < i <n
If ¢ = x;,then ¢ € Q. So @ is a partition of [&, b] such that ¢ £ ¢ and
U(P,f.e) —L(P,f,a) < &,
Suppose x;_; < ¢ < x; Then P = {xy,x,,%5, .., %;_y,C, X;, .., X, } i a partition of [a, b]
which is a refinement of Q.
Then by Theorem 11.1.6., 1.(Q. f, @) < L(P,f.a) < 1I(P, f.a) < 11(Q, f,a)
This implies that U(2, f,a) —L(P,f,a) = U(Q,f,a) — L(Q.f.a) < ¢
So, there exists a partition P of [a, b] such that ¢ € Pand U(P, f,a) — L(P, f,a) < .
Assume that the above partition P = {x,, x;, %, .....,x,} and x; = ¢ for some i such
that1 < i; = n.
Write @, = {xﬁ,xl,x:, ..,x:-n} and @ = {xp x5, %5, e, X}
Then @, is a partition of [a, ¢] and @, is a partition of [c, b]
fonla,clisf,and f on [c, b] is f5
Write M, = SIE}J{}C(I”I (= [-"’-'2—1,-""-'1]] and
m; = inf{f(x)|x € [x;_ x;]} for 1 < i <mn.
Consider U(F, f,@) = ey MAa, + T2, MAa, + 2, .4 M,Ac,
=U(Qyfr,a) +U(Qy fo @)
Similarly U(P,f,a) = L(Q,,f, &) + L(Q..f5, &)
Consider U(P, f,a) — L(P, f,a) < &. This implies that
U(Qy froa) —L(Qy, f.a) <eand U(Q,, fo, @) — L(Qy, fr, @) < &
That is U(@y, fi. @) — L(Q,.f;, &) < £ on [a,c]
And U(Q,,f5,a) — L(Q,, f>.a) < £on [c, b]
By Theorem 11.1.8 f £ R{@)on[a,c]and f € R(a)on [c, b]

Next we will show that _I’: fda+ f: fda= _I": f da.

Lete =0
Since f € R(a) there exists a partition P of [a, b] such that
UP,f,a) —L(P,f,a) < £ e e (1)

Without loss of generality we may assume that ¢ € P and suppose x; = ¢ for some iy
suchthat 1 < i, < n.

Write @, = {x4, 1, %, .. "’xin} and @ = {x x,, %5, 0een, X, }
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Then @, is a partition of [a, ¢] and @, is a partition of [¢, &] such that
r=g,ve,
Now [ fda < U(P,f,e) < L(P, fra)+e By()

=L(Q.fa)+ L(Q,.fa)+ =< fda:-l—ffdrx+s

a

This implies that fn fda < _I"r_ fda+ _I'; fda+e
Since £ = ( is arbitrary, we have _[': fea < [ fda+ _[': fda ... (2)
Consider [” fdax = L(P, f,a) > U(P,f,a) —¢
=U(Qnf,a)+U(Q,f,a)—«
= [ fda+ [ fda-e
Since £ = 0 is arbitrary, we have _I":fdrx = [ fda+ fcbfdrx U )
From (2)and 3) [* fder = [ fda + [ f dax

12.1.5 Theorem: f € R(a) on [a, b]andif [f(x)| = M on [a, b] then
|2 £ da < M[a(b) - a(a)]

Proof: Suppose f € H{a)on [a,b]and |f(x)| < M on[a, b].

Since f € R(a) on [a,b], we have [* f da = [ £ da + [*  da

Let P be a partition of [a, b] )

Write M, = 51¢p{f(x)|x (= [xi-_in]} and

m; = inf{f(x)|x € [x;_y x;]} for 1< i <n.
Since |f(x)| < M on[a, b], wehave - M < f(x) < M forall x £ [a, b].
This implies that -M < f(x) < M forall x € [x,_,x;] for 1 < i <n and hence
-M=m, =M, =Mforl=i=n.

Consider L(P, f.a) < [* fda = [* fde + [ f dat .........(1)

Consider L(P, f, @) = X2, M;Aa; =2 37, (—M)Aa, = —M X1 | Aa
= —Mla(b) — a(a)]

This implies L(P. f. a) = —M[a(b) — alal]... .. ....(2)
Consider U(F, f,a) = oy M,Aa, < Xl- (M)Aa, = M X, Aa;
= M[a(b) —a(a)]

This implies U(P, f,a) < M[a(b) —a(a)] ... .......(3)

From (1), (2) and (3), we have
—Mla(b) — a(@)] < [7 f da < Ma(b) - a(a)]

Andhence | [* f da| < Mla(b) - a(a)l.
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12.1.6 Theorem:Iff € R(a,) and f € R(a,) on [a, b] then f € R(a, + a,) on [a, b] and

[ fd(a,+a) =[] fda, + ] fda,
Proof: Suppose f € R{«,) and f € R(a,) on [a, k]. Lete = 0.
Since f € R(a,) on [a,b] forj = 1,2 there exists P, of [a, b] such that

- £
U[P ,_,T,CIJ;) - L[Pj;f; ﬂf}) ‘:; pre e e (1)
Let P be the common refinement of P, and P,.
Then by Theorem 11.1.6, L(P;, f. @;) < L(P,. f.&;) < U(P;. f.a;) < U(P,. f.a;) for

j=1.2.
U(P.f.a;) —L(P,.f.a;) < U(P,.f.a;) — L(P,.f.a;) < =, for this implies that
=12 (2)

Assume P = {xg, 11, %5, .., X,

Write M, = Sup{f(x)|x € [x,_, x;]] and

m, = inf{f(x)|x € [x_, x]}for1<i<n.

Consider U(P, f,a, + a,) = 2oy M A(a, + a;)
=X M ((ay + ay)(x) — (ay +ay) (x;24))
=X Moy () +a,(x) —ay (2 y) — ay(x, )]
= Xy MiAa, + X MAa,

= U(P;frfx1)+ufp-fra:]

Therefore U(P, f,a, + a,) =U(P, f,a,)+ U(P, f,a,)

Similarly L(P, f,a, + «;) = L(P, f,e,) + L(P, f, a,)

Now consider U(P, f,a; + a,) —L(P,f, a; + a,)

=U(P, foa)) + U(P.fa) = L(P.f,a)) —L(P, foa)) <5+ 2 =2 (by2)

So for £ = 0 there exists a partition P of [a, b] such that

U(P,f,a, +a,) —L(P,f,a,+ a,) < £ and hence f € R{a, + a,)

Next we will show that _l’ﬁb fd(a,+ a,] — _l"ﬂb fda, + _I": fda,

Since f € R(a, + a,), we have _I':fd(cx1+ a,) = _I":fd(rxl +a,) = _I'ffd(rxl +a,).

Consider _]": fd(a,+ a,) =inf{U(P,f,a, + a,)|P is apartition of [a, b]]
=inf{U(P, f,a,)+ U(P, f,a,)|P is a partition of [a, b]}
= inf{U(P, f,a,)|P is a partition of [a, b]}

+ inf{U(P,f,a,)|P isa partition of [a, b]}

b b
=J-fda:1+J.fda::

Therefore [ fd(a, + ay) = [7 fday + [ fdy e (3)

Consider _]": fd(a,+ a,) =Sup{L(P,f,a, + a,)|P is a partition of [a,b]}
= Sup{L(P,f,a;) +L(P,f,a,)|P is a partition of [a,b]}
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< Sup{L(P,f,a,)|P is a partition of [a, b]}
+ Sup{L(P,f,a,)|P is a partition of [a, b]}

=[] fda,+ [ fda,
Therefore u": fd(a,+ a;) < _|": fda, + _]": fday e (4)
From (3) and (4) _I’: fidla,+a,) = f: fda, + _If fda,.

12.1.7 Theorem: If f € R( ) on [a, b] and ¢ is a positive constant then f € R(ca) and

[? fdca =c [’ fda.
Proof: Suppose f € R(a)on |a, ] and ¢ is a positive constant. Since ¢ = 0 and @ is monotonically
increasing, cer is monotonically increasing,

Lete =0
Since f € R{e), there exists a partition P of [a, b] such that
UP.£,@) = L(P,f,0) < 5 e (1)

Write M, = Sup{f(x)|x € [x,_ x,]] and
m; = .'nf[f(x)|x C [xi-_lei-]] forl1=i<mn.
Consider U(P, f,ca) = Xi=) M Acer,

=) Milcalz)ealxy)
i=1

= Ci M, (e(x;)e(x;-4)) = Ci MAa; = cU(D,f, )
i=1 i=1

Therefore U(P, f,ca) = cU(P, f, a).

Similarly L(P, f, ca) = cL(P, f, a).

Now consider U(P, f,ca) — cL(P, f, a) < ci =g (By(1))

So for £ = 0 there exists a partition P of [a, 5] such that U(P, f,ca) — L(P,f,ca) < £ and
hence f € R(cx)

Next we will show that [” fdca = ¢ [ fda
Since f € R(ca), we have f: Fdea = _I:f Fdea = _I'ffcicrx.

Consider _r: fdea = _r: fdex = Sup{L(P,f,ca)|P is a partition of [a,b]}

= Sup{cL(P,f,a)|P is a partition of [a, b]}
= Sup{L(P, f,a)|P is a partition of [a,b]}

=c _r: fde.

12.1.8 Theorem: If f € R(a)on [a,b]and g € R(ex) on [a, &], then
(@ fg € R(a)
mIfle R[rx]and|_|'ffdrx| < f:lfl de
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Proof: Suppose f € R(a)on [a,b]land g € R(a)on [a, b]

(a) First we show that f* € R(a), Since f is bounded, we have m < f(x) < M forall
x € [a, b] for some real numbers m and M.

Define @: [m, M] — R as @(t) = t* for all [m, M]

Then ¢ is continuous on [z, M]

Write h = @. Then h(x) = @(f (x)) = (f(x))* = f*(x) forall x € [a,b].

This implies h = f~.

By known Theorem, h € R (a) and hence f* € R(a)

Since f, g € R(a)on(a, b), by Theorem 12.1.1, f + g € R(a)

By Theorem 12.1.1 f — g € R(«)

Therefore (f + g)* + (f — g)* € R(a) and hence fg € R(a).

(b) @: [m,M] = Ras ¢(t) = [t| forall t € [m, M]

Then ¢ is continuous on [m, M]

Write h = [¢ o f]. Then h(x) = @(f(x)) = |f(x) = |flx forall x € [a, b].
This implies h = f*

By theorem 11.1.16, h € R (&) and hence |f| € R(a). Choose ¢ = +1

So that ¢ [* fd(a) = 0

Therefore |[*  da| = c 7 fd(a) = 7 cfda < [Iflda (Since e/ <171)
So, j:fda| = [PIfl da

Difx<0

12.1.9 Definition: The unit step function ! is defined by I{x) = { Lif x>0

12.1.10 Note: [ is continuous, at every point x ¥ 0. [ is not continuous at x = Q.

12.1.11 Theorem: If ¢ < s < b, f is bounded on [a, b], f is continuous at s and a(x) = I{x — 5),
then _I": Fda = f(s).
Proof: Suppose &t <. 5 <. b, f is bounded on [, b], f is continuous at 5 and ct(x) = I'(x — s, forall
x € [a, b].
Ifx< s, thena(x) =I(x—5s) =0
If x = s, then a(x) = I(x — s) = I. Clearly a is not continuous at x = s.
First we show that f € R(a) on [a, b].
Let== I'I.Puts._=%.
Since f is continuous at s, there exists & = 0 such that |[f () — f(5)| < £, whent € (a,b)

with |s — t| = 3. Thatis |f(t) — f(s)| < g whenever
a<s—80<s5+8<b....... (1.



‘ Centre for Distance Education 12.10 Acharya Nagarjuna University

Write x, = a,x, = 5%, = 5 + g,x = b. Then P = {x,,x,,x,, %5} is a partition of
[a, b].

Consider a(x,) = ala) =I(a—5) =0

alx,)=ala)=I1(s—s)=0

alx,)= rx(s+§) =I(s+§—s)= IG)= 1

a(x;)=a(b)=I(b—s) =1

Consider A(e;) = alx,) — al(x,) =0

Ma,)=a(x,)—al(x)=0

Maz)=al(xz)—alx,)=1-1=0

Write M, = Sup{f(x)|x € [x,_, x;]] and

m, = .'nf{f(:*:”:c S [:":—1,:":]] fori=1.2.3.

U(p, f,a) =M, and L(P, f,a) = m,

Consider - L(P, f,a) = —m, = —inf{f,(¥) |y € [x x|}

= sup{f (My & [x,x,]]

Now consider

U(P.f.a) = L(P.f,a) = sup{f (x}|x € [x, x,]} + sup{~F ()| € [x,x,]]
= .';'n.p{f(r) — flv)|r.vE ['x’Lr:]} =g +=(by(1)

g
=28 T == F e e [ 2
=3 (2)

Thus for & = 0 there exists a partition P of [a, b] such that U(P, f,a) — L(P,f,a) < £ and
hence [ € B{u)

Next we will show that _l’: fda = f(s).

Let P be the partition as above. Then U(P, f,a) = M, and L(P, f, a) = m,

Consider L(P, f,a) = m, = z'nf{f(x) |x € [xLx:]]- = f(s)

= inf{f(x) |x € [xLx:]} =U(P,f, a)
This implies L(P, f,a) < f(s) < U(P,f,a@) e cev oo e (3]

Alsowe have L(P, f,a} < [ fda < U(P,f,a) ........(4)
From (3) and (4), we have |£(s) — [? f da| < U(P, £, @) — L(P, f, &) < £ (by (2)).
This implies | fls) - f° fdrx| < e

Since £ = 0 is arbitrary, we have _I': fda = fi(s).

=0forn =12, ..... 5=, ¢, converges, {5, } is a sequence of

n —

12.1.12 Theorem: Suppose ¢
distinct points in (@, b) and a(x) = X>_, ¢, I(x — s,,) and [ is continuous on [a, b]. Then
[Dfda=Z5 0, f(s,).
Proof: First we will show that 27, ¢, I(x — s,,) converges.
Forany x € [ab] |c l(x—s,) | =lc, llI(x —5,) < lc,|=¢,forn=123....
Since 2=, €,, converges, by the comparison test 27—, t,, I (x — 5,,) converges.
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Next we will show that a is monotonically increasing. Suppose x, ¥ € [a, b]such that
x —s, = y —s, forall n. This implies I (x —s,,) =< (v — s,) and hence

o, Ix—5,) = ¥r,c, I(v—s,)

Thatis ee(x) =< a(v).

So @ is monotonically increasing.

Since f is continuous on [a, b] by Theorem 11.1.12, f € R{a)

Since a < 5, foralln, a(a) = X;- ¢, Ila—s5,) =0

Since 5, < b foralln, a(b) =X, c, I(b—5,)=0

Since f is continuous on [a, &], f is bounded on [a:, b].

SoputM = su,p{fl'xﬂx € [ab] ]

Now we will show that %> I(b—s,) = Xr_, c,- That is, we have to show that the

:lzJ.:'z

sequence of partial sums of the series X~ f(s,) converges to _]"1' f da.

Lete = 0. write g, =

n= J.:'z
g

M+1

Since X3_, ¢,, converges, there exists a positive integer
N such that Xy p i 6 < &) cen e e e (1)

Puta,(x) =2 " ¢ l(x—s5;)and X -y ¢; {(x —s;) forallx € [ab]

Then & = e, + @, and e, and &, are monotonically increasing on [« b] since f is
continuous on [a, b] by Theorem 11.1.12, f € R(a,)and f € R(a,)

Fori = 1,2.PutI;(x) = I(x — s;) forall x € [a b].

Since & <7 5, <2 band f is continuous at s, and f is bounded on [a, b] by Theorem 11.1.11.
[ fda; = f(s)fori =1,2, e (2)

By Theorem 11.1.6 and Theorem 11.1.7

.r fda, = .r fd(Ei=ye) =20 1.r fd(ea,) =X, :.r fda, =ZX, ¢ f(s)

By (2)
Consider &, (b) — a, (a] Lizy+161(b = 5) = XiZys 6 < & (By(1)

By Theorem 11.1.5, | € M{a,(b)— a,(a)) < Ms,
Therefore | [ f da — T ¢, £ (s;)| = |17 F da = [7 F da,

b
= [fda:: <Mz <(M+1)g =¢

This implies that |_|": fda—XX ¢ f (55)| < gforalln =N

This shows that the sequence of partial sums of the series X', ¢, f(s,,) converges to _[': f dea.

Hence _I": fda =% c, f(s,)

12.1.13 Note: Let f: [a, b] —= R be defined f(x) = k for some constant k and for all x € [a b].
Then f £ R on [a b] and _]":f(x)dx =k(b—a).
For this let P = {x4, x4, ....., x,,] be a partition of [z, £].
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Write M; = Sup{f(x)|x € [x,_, x;]} and

m, = Inf{f(x)|x €[x_,x]lfori<i<n

Then M, =kandm;, =kforl<=i=<n

UR,f) =X M Ax, = X kdx, = k(b — a)

Similarly, U(P, f) = k(b — a)

Therefore U{P, f) —L(P,f) = 0 < = forany ¢ = 0 and hence f € R on [a b]
Consider k(b— a) = L(P, ) < [7 f (x)dx < U(P,f) = k(b — a)

Therefore _]':f (x)dx = k(b—a).

12.1.14 Theorem : Assume @ increases monotonically on [ab] and @' € R on [a b]. Let f be
a bounded real function defined on [a b] Then f € R() on [a, b]ifand only if&’ € K. In that
case _I':f (x)dx = k(b — a).

Proof: Suppose « increases monotonically on [a b] and also assume that f be a bounded real
function defined on [a b].

Lete>= 0
Since &' € R there exists a partition P = {x,x.,.....,x,]} of [a, b] such that
UP,a)—LPa)<e...(1)

Since &' exists, a is differentiable on [a b]. Then  is continuous on [a b] and a is
differentiable on (a b). This implies e is continuous on [x;_; x;] and @ is differentiable on
(x;-yx;) for 1 < i <n. So by mean value theorem, there exists a point t; € (x;_, x;) such
that e(x;) — a(x,_,) = a'(t;)(x_yx;)for 1 < i <n.

Thatis Aa;, =a'( t;)Ax,forl <=i<n

Since f is bounded on [a b]. Put M = Sup{f(x) | » € [a, b]}

Now we will show that U(P, f,a) < U(P,f,a') + Me

U(P,f.a') zU(P,f,a) + Me

L(P,f,a) < L(P,f,a') + Me

L(P,f,a') = L(P,f,a) + Mc

Let s, € (x;_, x;) for 1 =i = n. Then by Theorem 11.1.10 and by (1),

ZIa'(sij @ (£) AK€ 2 e (2)
(;(:)rllsider |27, f(s)Ae, — 20, fs;)Ax,]

if(sijfxr(ti:&ai - if(%)ff(sejﬂxi‘

) ‘Z Fs)la' () — a'(s)] A,
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< ) IFE)lla' () ' (s)lax,
i=1
= Z Mla'(t) — a'(s)|Ax,
i=1

= MZI&'(tE) —a'(s;)]Ax, < Me

This implies that Z', f((s,)Aa; < X (fa’) (s )Ax; + Ms ... ...(3) and
L= f(fa')(s)Ax, < 2ty f(s)Aa; + Ms ... o (4)
Write M} = Sup{(fa")(x)|x € [x;,_ x;]]andfor 1 £ i <n
Then from (3), 21, f(s,)Aa; < Zi-,(fa")(s,)Ax; + Me

< Z M;Ax, +Ms = U(P, f,a') + Me
i=1
This implies that X, f(s5,)Aa, < U(P.f.a') + Me ..........(3)

Write M; = Sup{f(x)|x € [x,_, x;]} and
m; = Inf{f(x)|x € [x,_y x;]}for1<i<n
Then from (3), L(B, f,a) = Xlv, M Aa, < X7, f(s)Ae, < XI (fa')(s5,)Ax, + M=

This implies that L(P, f,a') — Me < XI-, (fa') (s, )Ax; wv e o (6)
Therefore inequalities (5) and (6) are true for any s; € |x;_y x;|for1 < i < n.
Consider U(P, f,a) = X, M.Aa, = M,Aa, + M,Aa, + - ...+ M, Aa,

= Sup{f (x)|x € [x;_yx;|}day + -+ Sup[f(x)[x € [x,_, x;[}Aa,,

= Z Sup{f (x)da;|x € [x;_, x;]]

Therefore U(P, f,a) = Sup T {f(x)Aa;|s; € [x;_1 %]} e oo (7)

Similarly U(P, f,a) = Inf T, {f(a')(s;)Aa;|s; € x|} e e e (8)

From (5) U(P, f,a') + Me is an upper bound of ¥ {f(s,)Aa,]|s, € [x,_, x,]} and From (6)
L(P,f &) — Me=is alower bound of E;’zj_[f (') (3;) A, |5':' C [x:'—l.x:']]'

From (7) and (8) U(P, f,a) < U(P,f.,a') + Me and

L(P,f,a) —Me < U(P,f,a")

Therefore U(P, f.a) = U(P,f.a' )+ Mz ... ... ...(9)

L(P,f.a) < U(P,f,a') — Me ... ... ......(10)

Similarly from (4) we can show that U(P, f,a') < U(P, f,a) + M= ... ... ...(11)
L(P,fu") SL(P,f,u) + M wecus . (12)

Now, we will show that f € R(a) on [a, b]ifand only if & € R on [a, b]
Suppose f € R(a) on [a,b].
Lete > 0.Put e, = —

M+l

Since @’ € R on [a, b] there exists a partition P, of [a, b] such that U(P,,a") — L(P},a') < &,
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Since f € R{a) on [a, b], there exists a partition P, of [a, b] such that

U(pfrfrﬂ’f) L(P:,f,.:x") =&

Write P = P, U P,. Then P is a partition of [, b] and P is the common refinement of P, and P,.
Then by Theorem 11.1.6.

U(P,f,a) —L(P,f,a) < g, and U(P,,a") — L(P,a') < &,

This implies that F satisfies (9), (10), (11) and (12)

Consider U(P, f,a') = U(P,f,a') + Mz,

L(P,f.a) <U(P,f.a') + Ms,

From the above two in equalities

UP,f,a')-U(Pf,a')<U(P,f,a") —L(P,f.a') + Me, + Mg, <2Me, +¢&, =¢.
Therefore for £ = 0

there exists a partition P of [a.b] suchthat U(E, f.a') — L(P.f.a') < ¢

and hence fa' € R on [a, b].

Conversely fa' € B on [a, b].

Lete= 0

Put s. =

2M +1
Since @’ € R on [a, b] there exists a partition P, of [a, b] such that U(P,,a") — L(P},a') < &,
Since fa' € R on [a, b], there exists a partition P, of [a, b] such that

U(Pyf,a') —L(Pyf.a') <&

Write P = P, U P,. Then F is a partition of [a, b] and P is the common refinement of P, and P-.
Then by Theorem 11.1.6.

U(Py,a")—L(P,a')< e and U(P,f,2") —L(P,f,a') < &,

This implies that F satisfies (9), (10), (11) and (12)

Now consider,

U(P,f,a) —L(P,f,e) < U(P,f,a") —L(P,f,a')+ Me; + Mg, < 2Me, + &, = ¢.
Thus for £ = 0

there exists a partition P of [a, b] suchthat U(P, f,a) — L(P,f,a) < ¢

and hence f € R(a) on [a, b].

Now we will show that _]'f fda = _]": (fa')(x)dx = _I": flx)a'(x)dx

Lete= 0
Put g, = e

Since &' € R on [a, b] there exists a partition @ of [a, b]suchthat U(@,a') — L(Q,a') < &,

Let 5 be any partition of [a, &]. Put P — 5 U @. Then P is the common refinement of S and ¢ and
U(P,a")—LPL,a")=U(Qa")—L(Q.a') <e

Now, P satisfies (9), (10), (11) and (12) for =,

Consider _r: fda <U(P,f,a) =U(P, f,a")+ Mg,

<U(Sfa)+Me, <U(S fa)+Me + 2

=U(S,f.a") +¢

This implies that _j: fda < U(S f,a") + e for any partition 5 of [a, b].
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Consider f:fdrx >L(P,f,a) <L(P,f,a') — Mg,
=L(5.fa’)—Ms, =L(5 f,a)—Ms — &
=L(S.f,a')—¢
Therefore _f: fda = L(S, f,a') — & for any partition S of [a. h].
Now fﬁbf:irx —¢e < inf{U(S, f,a')|S is a partition of [a,b]} = _I":(frx')(x]dx
And _I': fda+ e = Sup{L(5,f,a')|S is a partition of [a,b]} = _I":[frxf:] (x)dx
Therefore [* f der + ¢ < [7(fa')(x)dx < [7 f der + ¢
This implies | [?fda— [*(fa") (x)dx| <
Since = = 0 is arbitrary, we have _I": fda= f: (fa")(x)dx.

12.1.15 Theorem (Change of variable): Suppose @ is a strictly increasing continuous function
that maps an interval [4, B] onto [a, b]. Suppose & is monotonically increasing on [a, b] and
f €R(a) on [a,b]. Define B and g on [4,B] by B(¥) = a(¢(¥)). 9(3) = F(#(»)). Then
g €ER(@)and [ gdB = [ f da.

Proof: Since f € R(a), f is a bounded function and so f[a, b] is bounded

Since g isonto, g 4. B] = f(w[A.B]) = f[a. b]

This implies that g[4, B] is bounded, hence g is bounded.

Let ¥, ¥, € [A, B] be such that ¥, < v,.

Since ¢ is increasing on [4, B], ©(v;) < @(v,)

Since @ is monotonically increasing on [a, b], we have a(@(y,)) < a(@(3,)).

This implies that £(y;) = B(y,) and hence g is monotonically increasing on [4, B].

Next we will prove that ¢(4) = aand @ (B = b.

Clearly @(A4) £ [a,b], This implies that a < ¢@(4).

Since @ isontoand a € [a, b], there exists ¥ € [4, B] such that ¢(v) = a.

If A <y, then ¢(A) < @(v) (Since ¢ is strictly increasing).

This implies that ¢2(A4) < @, a contradiction.

So A = y and hence @(4) = a.

Similarly, we can show that @(B) = b.

Let @ = {v,, ¥y, ..., ¥,,) be a partition of [4, B].

Theny, = Ay, =Bandyy, £y, < =¥,

This implies that ¢(4) < @(y,) < - < @(v,) = ¢(B)

Take x; — ¢ () for 0 =i < n then

a=x,<x, < <x,=Dhb SoP ={x,,%,......x,} be a partition of [a, b] such that
o(y)) =x,for0<i<n
Conversely Let P = {x,, %5, ......., x,, } be a partition of [a, b].

Thena =x, <x,<--<x,=b
Since ¢ is onto, for each x,, there exists ¥, € [4, B] such that ¢( v,) = =x,.
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This implies that
@( v,) = aand @( v, = b. Since ¢ is strictly increasing, we have ¢ is one-one.

Since (A} = aand ¢(B) = b, we have 4 = y,, B = y,,.
AlsoA =y, =y, ==y, =B.

So @ = {vy, ¥y, -e e, ¥, ) is @ partition of [4, B] suchthat ¢( v,) = x, for 0<i < n
Next we will prove that f[a, b] = g[4,B]

Let x € fla, b]. Then x = f(y) for some y € [a, b].

Since ¢ is onto, there exists t £ [4,B] such that ¢( t) = .

Consider g(t) = f(e(t)) = f(») = x. This implies that x € g[4, B].

So, f[a, b] € g[A,B].

Let v € g[A, B]. Then y € g(t) for some t € [4,B].

Now ¢( t) € [a,b]. This implies that f(¢( t)) € [a, b].

Since g(t) = f(@( t)), we have g(t) € f[a,b] and so f € [a, b].

Hence f € [w, L] — y[4, B]

Let P = {x,,%4,.. ..., X, } be a partition of [a, b] then there exists a partition
Q ={vy, ¥y - e, ¥y  of [4, Bl such that o v,) = x;, for 0= i< n.

This implies that f[x,_;,x,] = gly,_,, y]for L <i <n.

Write M, — Su,p{fix) |:x (= [x:'—l,-*i]] and

m; = Inf{f(x)|x € [x;,_, x;]} and

Write N; = Sup{g(y)|y € [v;_,, ¥:]} and

n, = Inf{g(¥|y € [y, w1}

For 1 < i = n, Consider

M; = SILP{JP(I”X € [xi—in]} = supf[x;_., x;] = Sup gly;_y, ¥l = N,
This implies that M; = N;for 1 < i < n.Similarly m; =n;for1 <i <n
Consider II'P, f,ax) = X%, M Ae, = X0, M, [:a(?r:.) — rx('r‘._j_])

=3 M (ale(y)) - a(e( yi-1))) = 2y Ni(B(v) - B(:-)) = U(Q. 5.B).

Therefore U(P, f,a, = U(Q,g.f5)
Similarly we can show that L(P, f. &) = U(Q. g. )

Lete=0
Since f € R(a), there exists a partition P of [4, B] such that
U(P.f.a) —L(P,f.a) < £ .o (1)

Since I is a partition of [a, &] by the above facts, we have a partition @ of [4, E] such that
U(P,f.a) =U(Q,g.8) and L(P, f,a) = U(Q. 5. 8).

Then by (1) U(Q. g.£) —L(Q.9.8) < ¢

Therefore g € R(a)on [4, B].

Consider _Ir:j'r:lu — Sup{L(B, [, «)|P is apartlilivn ol [, 4]}

= Sup{L(Q,g,£)|P is a partition of [4,B]}

=[ gdp
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Hence [” f dz = [ g dp.
Short Answer Questions

1. Iff, ER(a) and f; € B(a) on[a,b]and f,(x) < f5(x) on 'a, b], then show that

b B
[ fda= [ f, da.
2. Define the unit step function I and show that I is continuous at every point x = 0.
3. Let f: [a, b] = R be defined by f{x) = & for some constant k and for all x € [a, b].

Model Examination Questions

1. Iff CR(a)on [a,b]anda < ¢ < b,then f C R(a) on [a,c]and on [c, k] and
[fda+[ fda=[ fda.

2. Ifa < s < b, f isbounded on [a, b], f is continuous at s and @(x) = I(x — s), then
[7 f de = £ (5).

3. Suppose ¢ is a strictly increasing continuous function that maps an interval [4, B] onto

[a, b]. Suppose & is monotonically increasing on [a, b] and f € R(a) on [a, b]. Define 8
and g on [A4,B] by B(y)=a(e(r), g(¥)=f(e(y)). Then geR(a) and
I, 9B =J fda.

Exercises

1. Suppose f is a bounded real function on [a, b]and f* € R [a, b]. Does it follow that
f € R(a) Does the answer change if we assume that f* € R?

Answers to Short Answer Questions

For 1, see theorem 12.1.3.
For 2, see definition 12.1.9
For 3, see note 12.1.13

12.2 SUMMARY:

This lesson provides a comprehensive introduction to the Riemann-Stieltjes integral,
covering its definition, properties, and applications. Learners will develop a deep
understanding of the integral's properties and learn how to compute it for various
functions. The Lesson Components are Introduction to the Riemann-Stieltjes integral,
Definitions and properties of the integral, Theorems with proofs, Exercise problems to
reinforce understanding.
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12.3 TECHNICAL TERMS:

R/
0.0

Partition

Riemann Stieltjes Integral
Commom Refinement
Monotonically increasing
Bounded

Continuous

Unit Step function
Converges

Sequence and series.

7 7 7 7
L X XS X

R/
0.0

R/
0.0

R/
0.0

R/
0.0

12.4 SELF ASSESSMENT QUESTIONS:

1. Ifa <s < b, fisbounded on [a, b], f is continuous at s and a(x) = I(x — s), then

[ fda=5(s).

2. Suppose ¢ is a strictly increasing continuous function that maps an interval [4, B] onto
[a, b]. Suppose @ is monotonically increasing on [a, b] and f € R(a) on [a, b]. Define 8
and g on [A4,B] by B(y)=a(e(r)), g(y)=f(e(y)). Then g € R(a) and

_Irf gdf — _r: [l
3. Suppose f is a bounded real function on [a, b] and f* € R [a, b]. Does it follow that
f € R(a) Does the answer change if we assume that f* € R?

12.5 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

I. V. Venkateswara Rao



LESSON-13
INTEGRATION AND DIFFERENTIATION

OBJECTIVES:
The objective of the lesson is to help the learners to understand

% To prove integrations and differentiation are (in a certain sense) inverse operations
and prove a selection of theorems concerning integration.
% To understand the relationship between integration and differentiations.

STRUCTURE:

13.0 INTRODUCTION
13.1 INTEGRATIONAND DIFFERENTIATION

13.2 SOME MORE EXAMPLES WITH SOLUTIONS
13.3 SUMMARY

13.4 TECHNICAL TERMS

13.5 SELF ASSESSMENT QUESTIONS

13.6 SUGGESTED READINGS

13.0 INTRODUCTION:

In this lesson, it has been shown that integration and differentiation are, in certain
sense, inverse operations. The fundamental theorem of calculus and integration by parts
are proved. Also the integration of vector valued function is studied. (Further rectifiable
curve is defined and it is proved that every continuously differentiable curve on [a, b] is
rectifiable).

13.1 INTEGRATIONAND DIFFERENTIATION:

13.1.1 Theorem: Let f be a real valued function on [a, b] such that f € R[a, b]. For
a<x<b,putF(x)= f;f(t) dt. Then F is continuous on [a, b]; furthermore, if f is
continuous at a point x,, of [a, b], then F is differentiable at xy and F'(x,) = f(x,).

Proof: Given that f is a real valued function defined on [a, b] such that f € R[a, b].

Also given that for < x < b, F(x) = [ f(t)dt.

Since f € R[a, b] is bounded on [a, b]. Then there exists an M such that | f(t)| < M for

allt € [a,b).

Lete > 0. Write § = ﬁ, Then § > 0.

Letx,y € [a, b] suchthatx < y and |x — y| < 6.

Consider |F(x) — F()| = |- [T f(©) dt — [ £(¢) dt|

= [, f@© dt| = |[) f(©) dt] < M(y —x) (By theorem)
=Mx—-—y)<MS§<(M+1)f<e.

So for € > 0, there exists § > 0 such that |F(x) — F(y)| < &, whenever |x — y| < 8.
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This implies that F is uniformly continuous and hence F is continuous on [a, b].
Suppose f is continuous at a point x, € [a, b] .
Now we will show that F is differentiable at x, and F'(xy) = f(x)-
Define h(t) = w for all t such thata < t < b and t+ x,.
A0

Now we show that lim;_,, h(t) = f(x,)

Let € > 0. Since f is continuous at x, there exists a § > 0 such that |f(x,) — f(t)| < €
whenever t € [a, b] with |xg —t| <0 .......(1)

Suppose 0 < [t —x¢| < 0. Thenxy — 8 <t < xy + 6.

This implies that either

Xg—0<xg<t<xg+66orxg—08<t<xy<xy+6.

Suppose xp — 6 <t < xp < x9 + 6.

Consider [h(t) — £ (xo)]| = [P0 _ £y

=—

S0 F ) du — [£f () du — £ (xo) (%o — ©)
|17 F () du — £ (x0) (0 — 0]

xol_t 1170 fQu) du — [ £ (o) du

| [P (F () — £ (xo))dul

X0
<oew—t) =e by ()
0
Therefore |h(t) — f(xy)| < &
Similarly we can show that x, — § < t < xy < x¢ + 8, then |h(t) — f(xo)| < &.
So, lim,_x, h(t) = f (x). That is lim,_, "0 — £(y .

t—xgo

This shows that F is differentiable at x, and F'(xg) = f(x)-

1

e
1

Xo—t

13.1.2 Theorem: (The Fundamental theorem of Calculus):
If f € R[a, b] and if there is a differentiable function F on [a, b] such that F' = f, then
b
2 f Gy dx = F(b) — F(a).
Proof: Suppose f € R[a, b] and F is a differentiable function on [a, b] such that F' = f. Let €
be any positive real number.
Since f € R[a, b], there exists a partition P = {x,, X1, X3, ....., X, } of [a, b] such that
UP,f)—L(P,f)<é€.un....(),
Since F is differentiable on [a, b], F is differentiable on [x;_; x;] for 1 < i < n.
This implies that F is differentiable on (x;_; x;) and F is continuous on [x;_; X;]
forl<i<n
By Mean Value theorem, there exists t; € (x;_; x;) such that
F(x) = F(xi1) = f(t)(xi —xi-) for1 <i<n
Since F' = f on [a, b]. We have F(x;) — F(x;_1) = f(t;))Ax; for 1 < i < n.
Now YL f(t)Ax; = XIL(F(x;) — F(x;-1)) = F(b) — F(a).
Therefore L(P, f) = Y=, miAx; < e f(t)Ax; < Xy MjAx; = U(P, f)
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Where M; = Sup{f(x)lx € [xi_llxi]} andm; = Inf{f(x)|x € [xi_llxi]} forl <i<

n.
SoL(P,f) SFMb)—F(@) SUP,f)eeieiiiiiiiaianinn. )
Also L(P, f) < [ f () dx S UP, v 3)

From (1), (2) and (3), |F(b) ~F(@)— [ f(x)dx| <e
Since € > 0 is arbitrary f:f(x) dx = F(b) — F(a).
13.1.3 Theorem: (Integration by parts): Suppose F and G are differentiable functions on
[a,b] F'=f €RandG' = g € R then
b b
J, F()g(x) dx = F(b)g(b)F(a)G(a) — [ f(x)G (x)dx.
Proof: Suppose F and G are differentiable functions on [a,b] F' = f € RandG' = g € R.
Define H on [a, b] as H(x) = F(x)G(x) for any x € [a, b].
Since F and G are differentiable on [a, b], H is also differentiable on [a, b] and
H =F'G+G'F = fG + gF.
Since G is differentiable on [a, b], G is continuous on [a, b].

Then by Known theorem, G € R. Therefore fG € R similarly gF € R.
By theorem 12.1.1. fG + gF € R; Thatis H' € R.

Put h = H'. By theorem 13.1.2 [ h(x) dx = H(b) — H(a).
But ff h(x) dx = f;(f(x)G(x) + g(x)F(x)) dx
= [P ()60 + [} g()F (x) dx
Therefore, [} h(x) dx = [, f()G(x) + [ g()F (x) dx
= F(b)G(b) — F(a)G(a)
And hence f: F(x)g(x)dx = F(b)g(b)F(a)G(a) — f:f(x)G(x)dx.

13.2 SOME MORE EXAMPLES WITH SOLUTIONS:

13.2.1 Example : Suppose f is a bounded real function on [a, b] and f2 € R on [a, b]. Does
it follow that f € R? Does the answer change if we assume that 3 € R?
Solution. The integrability of f2 does not imply the integrability of f.

For example, one could let f(x) = —1 if x is irrational and f(x) = 1 if x is rational.
Then every upper Riemann sum of f is b — a and every lower sum is a — b.
However, f2, being the constant function 1, is integrable.

The integrability of f3 does imply the integrability of f, By Known theorem with
o) = Vu.

13.2.2 Example : Suppose f is a real function on [0,1] and f € R on [c, 1] for every ¢ > 0.
Define [ f(x) dx = lim_q, [ f(x) dx if this limit exists (and is finite)
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(a) If f € R on [0,1] show that this definition of the integral agree.
(b) Construct a function f such that the above limit exists, although it fails to exist with
|f] in place of f.

Solution. Suppose f € R on [0,1].
Let € > 0 be given

And let M = sup{|f(x):0 < x < 1]}.

Letc € (0, ﬁ] be fixed,
And consider any partition of [0,1] containing ¢ for which the upper and lower Riemann
sums Y, M; (tj — tj_l) and Y, m; (tj - tj_l) of f differ by less than E.

Then the partition of [c, 1] formed by the points of this partition that lie in this interval
certainly has the property that its upper and lower Riemann sums}, 'M; (tj - tj_l) and

% 'm; (tj - t]-_l) of f differ by less than i.

Moreover, the terms of the original upper and lower Riemann sums not found in the

sums for the smaller interval amount to less than i.

In short, we have shown that for ¢ < ﬁ and a suitable partition containing c,

1
sz (tj—tj_l)—2< ff(x)dx szmj (tj—tj_1)+2
0

and
Z ’Mj (tj - tj—l) - % < fclf(X) dx < Z 'mj (tj - tj—l) + 2

Moreover, we have also shown that

, €
|z M; (4 = tj-1) = z M (4~ 1)| < 2

and

, €
|Z m; (4 = t-1) = z m; (4 — tj—1)| <2

Combining these inequalities, we find that

1 1
Off(x)dx—!f(x)dx <e€
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fo<c<-—u
aM
b)Letf(x) =(D"*"(n+1)

1 1 . 1 1
for—<x<-n=1,2,.. Thenif — < ¢ < = we have
n+1 n N+1 N

L Fedx = GOV 1) (5 - ) + S
Since 0 S~—c<+———=— , the first term on the right hand side tends to zero
N N N+1  N(N+1)

as ¢ | 0, while the sum approaches In 2.

Hence this integral approaches a limit. However,

LIfeoldx =+ 1) (35— ) + Zh5i+,

and in this case the first term on the right-hand side tends to zero as ¢ | 0, while the sum
tends to infinity.

13.2.3 Example : Suppose f € R on [a, b] for every Suppose b > a, where a isfixed.
Define [ f(x) dx = lim, o, [ f(x) dx

If this limit exists (and is finite). In that case, we say that the integral on the left converges. If

it also converges after f has been replaced by |f|, it is said to converge absolutely.

Assume that f(x) > 0 and that f decreases monotonically on [1, ©). Prove that

[ 100 f(x) dx converges if and only if },;°_; f (n) converges. (This is the so-called *“ integral

test” for convergence of series.)

Solution. Since both the series and the integral are increasing functions of their upper limits,
it suffices to show that they are bounded together.

Define f(x) = f(1) for0 < x < 1.
The upper Riemann sum for this partition is Y.nc1 f (k) and
The lower Riemann sum is Y-, f (k).

Hence we have

n n n n-1 n-1
Y@ s [ f@dr=ro+ | feodxs )y fh =+ Y f00).
k=1 0 1 k=1 k=1

This shows that

~f(0) + Ty f (k) < [ f(x) dx < TRETF (KD,
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And hence the sum and the integral converge or diverge together.

13.2.4 Example : Define f(x) = f;“ sin(t?) dt.
(a) Prove that |[f(x)| < 1/x if x > 0.
(b) Prove that 2xf (x) = cos(x?) — cos[(x + 1)2] + r(x),
Where |r(x)| < 5, and c is constant.

(¢) Find the upper and lower limits of xf (x) as x — oo.
(d) Does fooo sin(t?) dt converge?

Solution. (a) This inequality is obvious if 0 < x < 1.
Hence we assume x > 1.

We observe that

cos(x?) cos[(x+1)?] 1 1
flx) < - — =
2x 2(x+1) 2x 2(x+1)
_ 1+cos(x?) 1+ cos[(x+1)?]
a 2x 2(x +1)
2
< 1 + cos(x?)
2x
1
S —
x
A similar argument shows that
cos(x?) cos[(x+1)?] 1 1
o s 086D sl 412 1
2x 2(x+1) 2x 2(x+1)

-1+ cos(x?) —1+ cos[(x + 1)?]
2x B 2(x + 1)

-1+ cos(x?) —1-—cos[(x + 1)?]
2x + 2(x+1)

—1 2
> + cos(x*?)
2x

-1
> —
X

(b ) The expression just written for f(x) shows that

2xf (x) = cos(x?) — cos[(x + 1)?] + r(x),
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Where
(x+1)2
x cosu
r(x) = (x — 1) cos[(x + 1)?] -3 f E du.
xZ
If we integrate by parts again, we find that
(x+1)2 (x+1)2
f cosu  sin[(x+1)?] sin[x?*] 3 f sinu J
w2 = (x +1)3 x3 2 w2 w
x2 x2

We now observe that the absolute value of this last integral is at most

[00)

3 1 3/ S 3

—_ _— = | — 2 = x_

2 f u5/2 du [ " ]xz g
x2

It then follows by collecting the terms that

3
|r(x)| < o

(¢) Since r(x) — 0, the upper and lower limits of xf (x) will be the corresponding limits
of

cos(x?) — cos[(x + 1)? 1 1
(x%) _ [( )]:Sin(x2+x+5>sin(x+§>-

. . . : : 1 1
We can write this last expression as sin s sin (52 + Z)’ where s = x + .

We claim that the upper limit of this expression is 1 and the lower limit is -1.

Indeed, let € > 0 be given.

Choose n to be any positive integer larger than %.
1 1 Z 1 2

Then the interval (— + ((Zn + —) T — E) =+ ((Zn + —) T+ 6) ) is longer than 2 m,
4 2 4 2

And hence there exists a point t € ((Zn + %) T — €, (Zn + %) T+ 6)

at which sin (tz + %) = 1 and also a point u in the same interval at which

(i +3) =1
sinfu“+-)=-—
4
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Butthentf(t) >1—€eanduf(u) < —1+¢€
It follows that the upper limit is 1 and the lower limit is —1.

(This argument actually shows that the limit points of xf (x) fill up the entire interval

[-11].)
(d ) The integral does converge.

We observe that for integers N we have

N

f sin(t?) dt = zn: fk)
k=1

0

N N
3 r(k) cos(k?) — cos[(k + 1)?]
A ZT +2, k

k=1

N N
B r(k) [cos(1) cos[(N + 1)?] cos(k?)
_f(O)Jr; k +[ 2 N ]+k=2k(k—1)

The first sum on the right converges since |r (k)| < %, and the rest obviously converges.

Hence we will be finished if we show that

X

lim | sin(t?)dt =0,

X—00
(]

Where [x] is the largest such that [x] < x < [x] + 1.
But this is easily done using integration by parts.
The integral equals

cos[x]? cos(x?) cosu
2[x] x? 4’2

And this expression obviously tends to zero as x — oo,

13.2.5 Example : Deal similarly with f(x) = f;“ sin(e®)dt.
Show that

eXlfl <2
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and that
e*f(x) = cos(e*) — e tcos(e**t) + r(x),
Where |r(x)| < Ce™ for some constant C.
Solution. The arguments are completely analogous to the preceding problem.

The substitution u = e* changes to f(x) into

€x+1
sinu
fx) = f du,
ex
and then integration by parts yields
ex+1
cos(e*) cos(e**1) cosu
fG) = X | xtl J U2 du
ex
from which it then follows that
1 — cos(e¥) 1 + cos(e®)
T SO s——
We have the equality
€x+1
cosu
e*f(x) = cos(e*) — e L cos(e**tl) — e* f — du,
ex
And one more integration by parts shows that
ex+1
. cosu 3
e 2 du| < or
ex

In this case f(x) decreases so rapidly that there is no difficulty at all proving the
converges of the integral.

13.2.6 Example : Suppose f is a real, continuously differentiable function on [a, b],
f(@) =f()=0,and
f:fz(x)dx = 1.

Prove that

[P xf (o) ' ()dx = — 2
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and that

LU @Pdx . f) x?f2(x)dx 2.
Solution. To prove the first assertion we merely integrate by parts.
Taking u = x, dv = f(x)f'(x)dx,
So that du = dx and v = %fz(x).

Since v vanishes at both end points, the result is

b

b
1 1
[ 210 @ax = [ freae =3

a

The second inequality is an immediate consequence of the Schwarz inequality applied
to the two functions xf (x) and f'(x).

Model Examination Questions

1. State and prove the fundamental theorem of calculus.

2. Suppose F and G are differentiable functions on [a,b],F' = f € RandG' = g €R
then show that

[P F(x)g(x) dx = F(b)g(b)F (@)G(a) — [7 f(x)G (x)dx.
13.3 SUMMARY:

This lesson wuncovers the fundamental connection between integration and
differentiation, revealing their inverse relationship. Through the lens of the
Fundamental Theorem of Calculus, learners will explore key theorems and examples
that illuminate this critical concept. Key Takeaways of this lesson are Integration and
differentiation as inverse operations, The Fundamental Theorem of Calculus, Proofs
and applications of selected integration theorems, and Examples with solutions to
reinforce understanding.

13.4 TECHNICAL TERMS:

+» Real valued function
% Uniformly Continuous
+«+» Partition

¢ Upper Riemann Sum
+» Lower Riemann Sum
+» Constant function

% Upper Limit
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Integration And Differentiation|

% Lower Limit
%+ Converges absolutely
% Monotonically Decreasing

/7

¢ Diverge

13.5 SELF ASSESSMENT QUESTIONS:

1. Let f be a real valued function on [a, b] such that f € R[a, b]. For a < x < b, put
F(x) = f; f(t)dt. Then F is continuous on [a, b]; furthermore, if f is continuous at a
point x, of [a, b], then F is differentiable at x, and F'(xy) = f (x,).

2. State and prove the fundamental theorem of calculus.

3. Suppose F and G are differentiable functions on [a,b],F'=f €R and G'= g €R
then show that f: F(x)g(x)dx = F(b)g(b)F(a)G(a) — f: f(x)G(x)dx.

4. Suppose f is a real function on [0,1] and f € R on [c, 1] for every ¢ > 0. Define
J, ) dx = limg_4 [} f(x) dx if this limit exists (and is finite)

(a) If f € R on [0,1] show that this definition of the integral agree.

(b) Construct a function f such that the above limit exists, although it fails to exist with

|f] in place of f.

13.6 SUGGESTED READINGS:

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International

Editions Walter Rudin.

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition, 1985.

I. V. Venkateswara Rao



LESSON-14

INTEGRATION OF VECTOR-VALUED
FUNCTIONS AND RECTIFIABLE CURVES

OBJECTIVES:

The objective of the lesson is to help the learners to understand

% To define and compute integrals of vector-valued functions.
% To understand and apply properties of rectifiable curves.

STRUCTURE:

14.0 INTRODUCTION
14.1 DEFINITION

14.2 RECTIFIABLE CURVES

14.3 SOME MORE EXAMPLES WITH SOLUTIONS
14.4 SUMMARY

14.5 TECHNICAL TERMS

14.6 SELF ASSESSMENT QUESTIONS

14.7 SUGGESTED READINGS

14.0 INTRODUCTION:

In the lesson, we define vector valued function on |a, b] into R,, and proved some
properties of vector valued function. Also defined the rectifiable curve and derived
the formulae for length of the rectifiable curve on [a, b]

We define the integral of a vector valued function as the integral of each component.
This definition holds for both definite and indefinite integrals.

14.1 : DEFINITION:

Integration of vector valued functions let fi, £, -.. f;. bereal

valued functions on @, b] and let f = (fo for s frc)-
Be real valued functions [a, b] and let f = (f}, f5, ..., f;) be the corresponding vector
valued function of [a,b] into R®. Let @ be monotonically increasing function on
[, b], we say that f € R(a) on [a. b] if f; € R(@) on [a. b] for, 1 < i < k. If this is
the case, we define

b o o

[fdar= [;Tldar, [fkdnr

a a a
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14.1.1 Theorem:If f,g € R on [a, b], then
@ f+g
(ii) ¢f € R on [a,b] for every constant ¢ and
(1]

b b
j(}:-f_g'}da = j?ida-l- jEidﬂ

and
b b
j c?da = cj }:dtr

Proof: Suppose ;‘: = (fy.fprrfp)and g = (g,.8,. .. &) are vector valued functions of
[a,b] into B* and f,8 € R(a) on [a,b].
Then, f; € R(a)on [a,b]for1 <i <kandg; ER(e)on[a,b]for1<i <k,
By theorem 13.1.2, f; + &; € R(«) on [, b] for 1 = i =< k and
] ] ]
f{fi—l_gi}d“: ffi‘£“+ j gide for1<i<k

o

Since f +8 = (fi+84f> + 82 fr+ 8 and
fi+g;€ER(a)on[ab]forl1<i<k wehave f;+ g; € R(«) on [a,b].

b b b b
f{?‘i‘E)dﬂ = f(.fi +g,)da, f[:fz +g;)da, ""f(fk + gplda

Thus we have proved (i)
Let € be any constant
By Theorem 12.1.12, ef; € R() on [a,b] and
] ]
jcf!-dtr=c[f!-dﬂfar1£i£h
Since ¢f — (cfy.cf5, nef) we have f € R(=) on [a, b] and

b b b

[

J c}:dﬂ = f cfydu, [ cfydu, ,j cf;du

o o e

Thus we have proved (ii)

Similarly we prove the following Theorem by using Theorem 12.1.4, Theorem 12.1.6
and Theorem 12.1.7.
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14.1.2 Theorem: Let f be a vector-valued function on [a, b] and E¥

(i) If f € R(«) on [a,b] and if @ < ¢ < b, then on [a,c] and f € R(a) on [c, b) and

}:n‘,tr = }:dﬂ + }:dtr
e [Faec ]|
(i) Iff eR(e)and f € R(e)on [a,b] then f € R(a. + &) and

b b
jfd(ai + ;) = j JEdgi ‘|‘jfd“z

“

(i) If}: € R(«) on [a,b] and ¢ is a positive constant, then }: € R(ca) and
L]

DFd(m} - [ Fa
[t~

Theorem 12.1.1 is also true for vector-valued functions.

14.1.3 : Theorem:If f and F map [a.b]into R¥, if f € R(@) on [a. bl and F = f, then
b
| Fodt= 2w = Fa)

Proof: Suppose f =(f,.for .. f.) and map [a, b] into ¥ and)E ERand F' = f then f;, ER
on [e.b]and F/(a) = ffor1 < i<k

By known theorem,
o

jf(x}dx —“Fb)—Fla)y1<i<k

Therefore,
b E b b
[ Fear=|[ Aax, [ fGax, -, [ £
=F,(b) — F,(a).F.(b) — F:.(a)...... F.(b) — F.(a)
=F'(b)— F(a)
Therefore,

| Fwax=F ) - F@

Since x~ is a continuous function of x, by a known theorem, the square root function is
continuous on [0, M] for every positive real number M.

Since |f| =(ff+fr+-+ f,f]i, by Theorem 11.1.6 we have |f € R(a) on [a, b].
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Now, we will show that

0 b

| Fae| < f|f|:m.

a o
Put

el

¥; =j}3-dar forl=i=k,

and write v = (V1 Y2, ¥z, s Vi)

Then we have,
b

r
}F=J fr:lﬂ’

a

B B

By the Schwarz inequality,

and

k
Z Yif;(t) < ylIf ()], forall t € [a, b]
i=1

By Theorem 12.1.3

If ¥ — 0, then trivially
5 b
| Faa| < [Iflda
If [¥]=0 then divide (1) by |¥| on both sides. Then we have

1571 gflfldﬂr ffdﬂ < flfldﬂr

14.2 : RECTIFIABLE CURVES:
14.2.1 Definition: A continuous mapping ¥ of an interval [a, b] into R¥ is called a
curve in IR¥. In this case we sometimes say that v is a curve on [a, b].
1. If ¥ is one -to - one, ¥ is called an arc.

2. Ify(a) = y(b), y is said to be a closed curve. We associate to each partition
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P = {x4,%,,%,...,%x,} of [a, b] and to each curve ¥ on [a, b] the number.

AEY =Y ) =izl

i=1

The i " term in this sum is the distance (in R¥) between the points y(x;_;) and ¥(x;)
hence A (p,y) is the length of a polygonal path with vertices at
¥(xg),¥(x,), ., ¥(x,) in this order. This polygon approaches the range of ¥ if
llpll = 0. Hence the following definition is reasonable.

14.2.2 : Definition: Let ¥ be a curve on [a, b]. We define the length of ¥, defined by A (y), as
A (¥) = sup{n (p,y)/P is a partition of [a,b]}

We say that r is rectifiable, if A () is finite.

In the case of continuously differentiable curves, i.e. for curves ¥ whose derivative y' is
continuous. A (y) is given by a Riemann integral.

14.2.3 : Theorem : If y' is continuous on [a,b] then y is rectifiable and
A ) = [Pl ()ldt.

Proof: Suppose A (y) = f: l¥" |l dt is continuously differentiable on [a, b],

let P = {x,.%,,%, ..., x, } be any partition of [a, b].

Consider,
'y L

) —y(el = | | ¥i(R)dt

< j ly'(t)] dt

forl=i=k

(By Theorem 12.1.18) This implies that

Ao =) )=y

i=1

xf
n
=y f ' (6)l dt
i=1
Xi_y
b

=f|}*’(t1|dr

So for any partition P of [a. b],

b
ammzﬁﬂmm
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Consequently,

b
'ﬁ-(r)iflrf(tﬂdt ................ (1)

Let = = 0. Write €, = zi(a—fu: 11)

Since ¥ is continuously differentiable on [a, b]. ¥' is continuous on [a, b]. Since
[a, B] is compact and ¥’ is continuous on [a, ], ¥’ is uniformly continuous on
[a, b].Then there exist & = 0 such that |y'(s) — ¥ (t)] = &,.

Consider,

b xf
fl}*'(t]ldFZ’ flr*mm:
=1

<> ) -r@ltee Yy ax

i=1 i=1
=A(p,y) + 26.(b— a)

sAa(y) t26(b—a)

_ 2e(b—a)
=A) 2((b—a) + 1)
<= A(y)+:=

Therefore,

b
jlr’{’_tjl dt <A (y) +¢€

Since € = 0 is arbitrary,

@

Jl}'rf(t)ltitiﬂ{\}.rj ................... (3)

o

From (1) and (3),

b
jlr’(t)l dt <A (y).

14.3 SOME MORE EXAMPLES WITH SOLUTIONS:
14.3.1 Example: For 1 < s < oo, define {(s) = :’zl?;is
Prove that

@ ¢(s) =sf”Lax
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and that

M) () == —s 7 ax,

1 an'i' 1

Where [x] denotes the greatest integer = x.

Prove that the integral in (b) converges for all x = 0.

Hint: To prove (a) compute the difference between the integral over [1,N] and the Nth
partial sum of the series that defines ¢ (s).

ntl

Solution: (a) Ignoring the author’s advice, we note that
< _ N 1
SJ-TS"”-dI_SER s Tﬁldx
1 n=1l n 1
> i
= n|l————
n® (n+1)°

n=1
1 1 1 1
S R

[==}

1

n
n=1

={(s).

(b) This result is trivial consequence of (a) and the identity

s J’“‘ x
= dx.
_ P
s—1 , X

14.3.2 Example: Suppose @ increases monotonically on [a, b], g is continuous, and
g(x) = G'(x) fora = x = b. Prove that

b b

J. a(x)g(x)dx = G(d)a(b) — Gla)a(a) — J. G de.

2 [

Hint: Take g real, without of generality.
Given P = {xy,%,...,x,), choose t; € (x;_,,x,) so that g(t,)Ax; = G(x;) — Glx;_,).

Show that X1, a(x,) g(t;)Ax; = G(b)a(b) —G(a)ala) — X', G(x,_,)Aa,.
Solution: The identity just given is a trivial consequence of Abel’s method of rearranging the
sums:

n n

Z a(x;)g(t;)Ax; = Z a(x) (G(x) — G(x;_y))

i=1 i=1
= Gx,)a(x,) = Glxplalxg) = ) (xoy) (alx,) — alx,)
i=1

Now the fact that & (x) is continuous and « is non-decreasing means that the right-hand
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side can be made arbitrarily close to
b

G(blalb) —Gla)ala) — J.E de,

whenever the partition is s{;fﬁciently fine.

It does not follow immediately that the function a(x]g(x) is integrable on [a, b].
However, since @ is non decreasing, its only discontinuities are jumps, and for any
e = 0 there can be only a finite number of jumps larger than &.

These can be enclosed in a finite number of open intervals of arbitrary small length.

We can then argue, that any partition that is sufficiently fine will have upper and lower
Riemann sums that differ by less than e.

Hence a(x)g(x) is integrable, and its integral is given by the stated relation.

14.3.3 Example: Let ¥, ¥,.¥; be curves in the complex plane defined on [0, 27] by

vy (£) = eif, yo(t) = &%, y, (1) = etmitsin |:1."r:-:|‘
Show that these curves have the same range, that ¥, and ¥, are rectifiable, that the
length of ¥, is 2, that the length of ¥, is 4, and that 15 is not rectifiable.

Solution: Since e'® has period 27
It is obvious that ¥, and y, have the same range, namely the set of all complex numbers
of absolute value 1.
To show that this is also the range of y;
We need to show that the mapping ¢ = Zuisin [:th]r 0 = { = 2Zpi covers an interval
of length 2m
i.e., that the mapping t — tsin l:l,ft). 0 < t < 2m covers an interval of length 1. (We
naturally take the value to be zero when t = 0)
Since this range is connected, it suffices to find two points a and b in the range with
a—b=1.

We choose those points to be a = 3 (the image of t = E]
g m

and b = i(the image of t = —)
We have a — b =%::=1.

The rectification of ¥, and ¥ is straight forward:
Zm
i

1(r1) = | lyi(£lde =2m,

o
I

Hy) = [ lys (t) dt = 4

]
To show that ¥5 is not rectifiable, we observe that its length would be

f sin [lft] —%cos[lft)‘ dt = j:? w dt — 2m.

By making the substitution u: = f in the last integral we get
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(=]

J‘ |cosu,
1

But we already know that this 1ntegra1.dlverges since

{"u +—}w

J‘ COSTL o 1
E = du E
n=1 (

i 2n + )

14.3.4 Example: Let ¥, be a curve in R* defined on [a, b]; let ¢ be a continuous one-one
mapping of [¢, d] onto [a, b] such that ¢(c) = a, and define ¥, (x) =y, (cp (x)) Prove
that ¥, is an arc, a closed curve, or a rectifiable curve if and only if the same is true of
¥, - Prove that ¥; and ¥, have the same length.

Solution: We know that @ has a continuous 1-1 inverse ¢.

And that the composition of one-to-one functions is one-to-one.

Hence, since ¥, (x) = ¥, (e(x)),

We see that ¥, and ¥, are both arcs (one-to-one) if either is.

Since necessarily @(d) = b, we see that y, (a) =, (b) if and only if y, (¢) =y, (d).
Hence both are closed curves if either is.

Finally, since @ and ¢ establish a one-to-one correspondence between partitions {s;} of

[a, b] and {t,} of [c, d] such that Zly, (s,) — 3, (s,_y ) = Ely (£) — ya (£, ).
It follows that the two curves have the same length.

14.3.5 Example: Evaluate
f(sint)‘:‘ | 2tj 8tdkdt
Solution: Just take the integral of each component
J.(sintj'x‘ dt + [ 2t dr—f 8t® k dr .
=(—cost+¢c,) i+ (P +c)j+ (2t* + )k

14.3.6 Note: We have introduce three different constants, one for each component.
14.3.7 Example. Suppose f = 0, f is continuous on [a, ] and _l"f fax =0 then
prove that f(x) = 0, for all x € [a, b].
Solution. Let P be a partition of [a, ]
Since f is continuous on [a, b]
Then f € R on [a, D]

Since f is continuous on [a, b] then f attains its maximum, so M; = f(t;) for
some t; € [x;_y,x;]

Now for any partition P, U(P, f) = ™, M,Ax,
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Since Inf U(P, f) = [ fdx

z,
fra
0

= infU(p,f)l =0

= if(t:.)ﬂx:- =0
i=1

= f(t,) = 0fort, € [a,b]
= f(x) = 0forall x € [a,b].

14.3.8 Example. If f €R on [a,b] then |f| € R on [a. b]. Show that the converse
need not be true.

Solution. Define f: [a, b] = R by
HOR

|f(x)| = 1, for all x € [a,b]

|1 is constant function on [a. b]

1if xis rational mumber
—1if x is irrational

|| is continuous on [a, b]
Ifl € R on [a,b]andf:fdx =1

Since f € R on [a. }]
Therefore |f| € R on [a, b] but f € R on [a, b].

14.3.9 Example. Suppose @ is increasing on f € R on [a,bl,a < x,;<b, a is
continuous at ¥, f(x,)=1 and f(x) =0 if ¥ # v, then prove that

fER(@)and [* fda = 0.

Solution. Define f as f(x) = {f’;i i i“’
Therefore we have f(x5) = f(x;) =0
But f(x,) =1

= fxg) = flxg) # f(x,)

— [ is discontinuous at

Therefore f has only one discontinuity in [a, b]
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Given that a is continuous at x

By Known theorem f € R(a) on [a, b]
Let P be a partition of [a. b]
Wehavem; =0,1<i<n

= Z mha ;=0
i=1

= L(p. f, @) = 0 for ant partition P of [a, b]
= SupL(p,f.a) =0

b
=>J.fda:=l]

Therefore _]": fda=0.

14.4 SUMMARY:

This lesson introduces the concept of integrals of vector-valued functions, exploring
their definition, computation, and properties. Learners will also delve into the concept
of rectifiable curves, understanding their properties and applications. The components
of this lesson is to Introduce integrals of vector-valued functions, Definition and
computation of integrals, Theorems with proofs, Rectifiable curves: definition,
properties, and applications, and Examples with solutions to illustrate key concepts.

14.5 TECHNICAL TERMS:

R/
0.0

Arcs

Closed curve
Compact
Complex plane

R/
0.0

R/
0.0

R/
0.0

++ Constant function

+» Continuity

« Derivative

¢ Discontinuity

+« Functions

+» Integral of each component
¢ Monotonically

«+ Partition

+ Rectifiable curve

¢ Series

R/
0.0

Vector
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14.6 SELF ASSESSMENT QUESTIONS

1. Define Integration of vector valued functions.

2. Define arc.

3. Define closed curve.

4.1f f, g € R on [a, b], then

@ f+g
(ii) cf € R on [a, b] for every constant ¢ and
(1]

j{;‘" | Ejdﬂr - j;‘"ida+ jEidﬂ

and

5.1f y' is continuous on [a, b] then ¥ is rectifiable and A (y) = _I":Jlr’ (t) dt.

14.7 SUGGESTED READINGS:

1.

Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International
Editions Walter Rudin.

Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2" Edition,
1985.

I. V. Venkateswara Rao



