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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof.K.GangadharaRao 
M.Tech.,Ph.D., 

Vice-Chancellor I/c   
AcharyaNagarjunaUniversity 
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CODE: 102MA24 
M.Sc DEGREE EXAMINATION 

First Semester 
Mathematics::Paper II - ANALYSIS-1 

MODEL QUESTION PAPER 

Time : Three hours              Maximum : 70 marks 
 
Answer ONE question from each Unit.                                                              (5 x 14 = 70) 

 
UNIT-I 

 
1. Prove the following: 

(i) If 𝑝 > 0, then lim
௡→ஶ

ଵ

௡೛ = 0. 

(ii) If 𝑝 > 0, then lim
௡→ஶ

ඥ𝑝೙ = 1. 

(iii) lim
௡→ஶ

√𝑛
೙

= 1. 

(iv) If 𝑝 > 0 and 𝛼 is real, then lim
௡→ஶ

௡ഀ

(ଵା௣)೙ = 0. 

(v) If |𝑥| < 1, then lim
௡→ஶ

𝑥௡ = 0. 

(OR) 

 

2. A) Prove that  ∑
ଵ

௡(୪୭୥೐ ௡)೛
ஶ
௡ୀଶ   converges if 𝑝 > 1, and diverges if  𝑝 ≤ 1 

           B) State and Prove Merten’s Theorem. 

 
UNIT – II 

 
3. A)  A mapping 𝑓 of a metric space (𝑋, 𝑑ଵ) into a metric space (𝑌, 𝑑ଶ) is continuous   

on 𝑋 if and only if. 𝑓–ଵ(𝑉) is open in 𝑋 for every open set 𝑉 in 𝑌. 
           B) Suppose 𝑓 is a continuous mapping of a compact metric space 𝑋 into a metric space   

𝑌. Then 𝑓(𝑋) is compact. 
 

            (OR) 
 

4. Let 𝐸 be a non-compact set in ℝ. Then 
a) There exists a continuous function on 𝐸 which is not bounded. 
b) There exists a continuous and bounded function on 𝐸 which has no maximum. If, in 

addition, 𝐸 is bounded, then 
c) There exists a continuous function on 𝐸 which is not uniformly continuous. 

 
UNIT – III 

 

5. A) Define 𝑓(𝑥) = ቊ
𝑥ଶ sin

ଵ

௫
, if (𝑥 ≠ 0)

0         if       𝑥 = 0 

  

            Then prove that 𝑓 is continuous and differentiable at 𝑥 = 0. Is 𝑓ᇱ continuous at 



𝑥 = 0. 
           B) Let 𝑓 be a real value function defined on [𝑎, 𝑏]. If 𝑓 has a local maximum at a point  

𝑥 ∈ (𝑎, 𝑏) and if 𝑓ᇱ(𝑥) exists, then 𝑓ᇱ(𝑥) = 0. 
 

     (OR) 
 

6. A) If 𝑓 and g are continuous real functions on [𝑎, 𝑏] which are differentiable in 
(𝑎, 𝑏), then there is a point 𝑥 ∈ (𝑎, 𝑏) at which  

[𝑓(𝑏) − 𝑓(𝑎)]gᇱ(𝑥) = [g(𝑏) − g(𝑎)]𝑓ᇱ(𝑥). 
B) State and Prove L – Hospital’s rule theorem. 

 
UNIT – IV 

 
 

7. A) Suppose that 𝑓 is a continuous mapping of [𝑎, 𝑏] into ℝ௞ and 𝑓 is       
differentiable in (𝑎, 𝑏). Then there exists 𝑥 ∈ (𝑎, 𝑏) such that 

|𝑓(𝑏) − 𝑓(𝑎)| ≤ (𝑏 − 𝑎)|𝑓ᇱ(𝑥)|. 
              B)  Suppose 𝑓 is defined in a neighbourhood of 𝑥, and suppose 𝑓 ′′(𝑥) exists. 

                  Show that lim௛→଴
௙(௫ା௛)ା௙(௫ି௛)ିଶ௙(௫)

௛మ = 𝑓 ′′(𝑥). 

 
                 (OR) 
 

8. A) 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏] if and only if for every 𝜀 > 0  there exists a partition 𝑃 of 
[𝑎, 𝑏] such that 𝑈(𝑃, 𝑓, 𝛼) − 𝐿(𝑃, 𝑓, 𝛼) < 𝜀. 

            B) Suppose 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏], 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏], 𝜑 is continuous on           
             [𝑚, 𝑀] and ℎ(𝑥) = 𝜑൫𝑓(𝑥)൯on [𝑎, 𝑏]. Then ℎ ∈ 𝑅(𝛼) on [𝑎, 𝑏]. 
 

UNIT – V 
 

9. Assume 𝛼 increases monotonically on [𝑎,𝑏] and 𝛼ᇱ ∈ 𝑅 on [𝑎,𝑏]. Let 𝑓 be a bounded 

real function defined on [𝑎,𝑏]. Then 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏] if and only if 𝑓𝛼ᇱ ∈ 𝑅 on [𝑎,𝑏].  

Also ∫ 𝑓
௕

௔
𝑑𝛼 = ∫ 𝑓(𝑥)

௕

௔
𝛼ᇱ(𝑥)𝑑𝑥. 

                                                                          (OR) 
 

10. A)  State and Prove Fundamental Theorem of Calculus. 
             B)  Suppose 𝐹 and 𝐺 are differentiable functions on [𝑎, 𝑏]  𝐹ᇱ = 𝑓 ∈ 𝑅 and 

                    𝐺ᇱ = 𝑔 ∈ 𝑅 then ∫ 𝐹(𝑥)𝑔(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏)𝐺(𝑏) − 𝐹(𝑎)𝐺(𝑎) − ∫ 𝑓(𝑥)𝐺(𝑥)𝑑𝑥.

௕

௔
 

 
 

****** 
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LESSON-1 

NUMERICAL SEQUENCES 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the concept of numerical sequences and their properties. 
 To apply various types of sequences in mathematical and real world contexts. 

STRUCTURE: 

1.1 SEQUENCES 
1.2 UPPER AND LOWER LIMITS 
1.3    SOME MORE EXAMPLES WITH SOLUTIONS: 
1.4    SUMMARY 
1.5    TECHNICAL TERMS 
1.6    SELF ASSESSMENT QUESTIONS 
1.7    SUGGESTED READINGS 
 

1.1   SEQUENCES:   
 
A sequence in  is a function from (the set of positive integers) into  If  is a sequence, 

then the image  of  is usually denoted by  It is customary to denote the sequence 

 by the symbol . The image  of  is called the  term of sequence. 

If  and  are two sequences in  then  is said to be a sub-sequence of  if there exists a 

mapping  such that (i) (ii) for each  there exists  such that 

 for every  in  In other words, if  is a sequence in  and  is a 

sequence in  such that  then  is called a subsequence of . 

For example, if  is a sequence in  then  is a subsequence of . 

 

1.1.1 Definition:  A function  defined on the set of all positive integers or the set of all 
non-negative integers is called as sequence. 
 

1.1.2 Notation: If  for any positive integer  we denote the sequence  by 

 or . 
 
 

1.1.3 Definition: Let  be a metric space. A sequence  in  is said to be a 

convergent sequence if there is  such that for any  there is a positive integer  

such that   Here  is called the limit of the sequence  and we write 

 or  as  
 

1.1.4 Definition: If the sequence  is not convergent then it is said to be divergent. 
 
 

1.1.5 Theorem: Let  be a sequence in metric space  

(i)  converges to  if and only if every neighbourhood  contains all but finitely 

many terms of  
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(ii) If   and  and if  converges to  and   then . 

(iii) If  converges, then  is bounded 

(iv) If  containing  and if  is limit point of  then there is a sequence  in  

such that  

Proof: (ii) Given , choose “+ve” integer , and  such that ; 

,  

, . For , 

 
Let ,  

(iii) Choose a “+ve” integer  

If . 

Then  is bounded 

(iv) Given , choose “+ve” integer  and 

choose   . For ,  i.e., . 

 

1.1.6 Theorem: Suppose   are complex sequences, and the 

. Then   

(i) Then  

(ii) ,  for any complex number  

(iii)  

(iv)  provided  and  
 

1.1.7 Definition: Let  be a sequence in  Let  be a sequence of positive integers 

such that  Then  is called a subsequence of . 

If   converges, then the limit of this sequence is called as a sub sequential limit of  
 

1.1.8 Note:  converges to  iff every sub sequence of   converges to  
 

1.1.9 Theorem: 
(i)  If  is a sequence in a compact metric space in  then some sub sequence of  

converges to a point of  

(ii) Every bounded sequence in  contains a convergent subsequence. 
 

1.1.10  Theorem: The sub sequential limits of a sequence  in a metric space  forms a 

closed subset of  
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1.1.11  Definition: A sequence   in a metric space  is said to be Cauchy sequence 

if for every for every   there is a positive integer  such that  

 
 
 

1.1.12  Definition: Let  be a subset of a metric space  Then the supremum of the set 

 is called the diameter of  and is denoted by  
 

1.1.13  Theorem:  
(i) In any metric space  every convergent sequence is a Cauchy sequence. 

(ii) If  is a compact metric space and if  is a Cauchy sequence in  then  converges 

to same point of  

(iii) In  every Cauchy sequence is convergent. 
 

1.1.14  Definition:  A metric space  is said to be a complete metric space if every Cauchy 

sequence in  is convergent. 
 

1.1.15  Example: 
1. The metric space  is a complete metric space. 
2. Every compact metric space is complete. 
 

1.1.16  Definition: A sequence  of real numbers is said to be  

(i) Monotonically increasing if  for  

(ii)  Monotonically increasing if  for  
 

1.1.17  Definition: A sequence  of real numbers is said to be a monotonic sequence if 

either  is monotonically increasing (or) monotonically decreasing. 
 

1.1.18  Note: Suppose  is a monotonic sequence. Then  converges if and only if it is 
bounded. 
 
1.2 UPPER AND LOWER LIMITS: 
 

1.2.1 Definition: Let  be a sequence of real numbers. 

(i) If for every real  there is an integer  such that  , then we write 

 as  

(ii) If for every real  there is an integer  such that  , then we write 

 as . 
 

1.2.2 Definition: Let  be a sequence of real numbers. Let  be the set of all numbers  

in the extended real number system such that  for some sub sequence  of  

i.e., . 

Then  contains all sub sequential limits of  plus possibly the numbers   

Define  and . 
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The numbers  and  are called upper limit and lower of the sequence  respectively and 

we write  and . 
 

1.2.3 Theorem: Let  be a sequence of real numbers. Let  

. and  Then  has the 

following two properties: 

(i)  

(ii) If  then there is an integer  such that   

Moreover,  is the only number with the properties (i) and (ii). 
 

1.2.4 Theorem: Let  be a sequence of real numbers. Let  

. and  Then  has the 

following two properties: 

(i)  

(ii) If  then there is an integer  such that   

Moreover,  is the only number with the properties (i) and (ii). 
 

1.2.5 Remark: Let  and  be two sequences of real numbers. 

(1)  If for fixed integer    then  

(i)  

(ii)  

(2)  If for fixed integer    and if  then  
 

1.2.6 Theorem:  
(i) If  then  

(ii) If then  

(iii)  

(iv) If  and  is real, then  

(v) If  then . 

Proof:  

(i) Suppose that  is a real number. Choose  

Take a Positive integer  such that  

For any integer     

So  

This shows that  

(ii) Suppose that  
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Case(i): Suppose that  

For any integer  write  

It is clear that   

Also,                  ( by (1) ) 

    

Let . Choose a positive integer  such that  

For any integer    

Now  

Therefore . That is   

 
Hence  

Case (ii): Suppose  

Now  

Case (iii): Suppose  i.e  

 is a real number. 

So by case (i), we get that  

  

(iii) For any integer  write ……..(1) 

It is clear that   

Also from (1)  

 
Choose . Take a positive integer  such that   

For any integer   

 Therefore . 

. 

(iv) Suppose that  and  are real numbers. 

Let  be a positive integer such that  

For any  
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Let  

Now  

Therefore  

 a positive integer  such that   

Take  

For every  

  

This shows that  

(v) Suppose that  is a real number such that  

  

Let  

Then  is a real number such that   

By (iv)  for every real number  

Taking  we get that   

 

1.3 SOME MORE EXAMPLES WITH SOLUTIONS: 
 
1.3.1 Example: Prove that convergence of  implies convergence of  is the 
converse true? 

Solution: Let   

Since the sequence  is a Cauchy sequence, there exists  such that  for all 

 and   

We then have  for all  and   

Hence the sequence  is also a Cauchy sequence, and therefore must converge.  

The converse is not true, as shown by the sequence  with  

1.3.2 Example: Calculate  

Solution: Multiplying and dividing by  yields 
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It follows that the limit is . 

1.3.3 Example: If  and   prove that  

converges, and that  for  

Solution: Since  it is manifest that if  then . 

Hence it follows by induction that  for all  

In view of this fact, it follows that  for all  

i.e.,  

Hence the sequence is an increasing sequence that is bounded above (by 2) and so  
converges. 

Since the limit  satisfies  

It follows that the limit is . 

1.3.4 Example: Find the upper and lower limits of the sequence  defined by  

;  

Solution: We shall prove by induction that  

 and  for  

The second of these equalities is a direct consequence of the first, and so we need only prove 
the first. 
Immediate computation shows that   and . 

Hence assume that both formulas hold for  

Then  

This completes the induction. 

We thus have  and . 

1.3.5 Example: For any two real sequences  prove that 

 provided the sum on the right is not of the 

form  
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Solution: Since the case when  and  has been excluded 

from consideration. 

we note that the inequality is obvious if . 

Hence we shall assume that  is bounded above. 

Let  be a subsequence of the positive integers such that 

 

Then choose a subsequence of the positive integers  such that  

The subsequence still converges to the same limit as  

i.e., to . 

Hence, since  is bounded above (so that  is finite), 

It follows that  converges to the difference  

  

Thus we have proved that there exists sub sequences  and  which converge to 

limits  and  respectively such that  

Since  is the limit of a subsequence of  and  is the limit of a subsequence of  

It follows that  is the limit of a subsequence of  and , from 

which the desired inequality follows. 

Exercises 
 

1.  Write a formula for  for each of the following sequences: 

(i)   

(ii)  

(iii)  

(iv)  

Ans. (i)  if  is odd,  if  is even,(ii)  if  is odd,  if  is 
even. 

(iii)  (iv)  
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2. If  and  are real numbers such that  for every  then prove that  

3. Use the definition of the limit of a sequence to show that the limit of a sequence  

where  is 2.  

4. If the sequence  converge to  then prove that the sequence  converges to  

         [Hint: Use the inequality  . 

5. Give an example of a sequence  of real numbers such that  converges but  
does not. 
Ans: One such sequence is  where . 

6. Prove that the sequence  where  diverges to . 

7. Is the sequence  convergent? 
Ans: Yes, it converges to 0.  
8. If  and  are non-decreasing bounded sequences, and if  prove 

that . 

9. Show that  where  is any number. 

10.  Show that  or  according as  or  

11.  If  are positive and if for     and , Show that 

 and  are monotonic sequences and approach a common limit  where  

12.  If  where  are positive, show that the sequence  tends to definite 

limit  the positive root of the equation  

13.  If  is positive and  are positive and negative roots of prove that if 

 and  then  

14.  If  and  9i.e.,  is the harmonic mean of  and  

show that . 

15. If  prove that  and 

 

16.  If  is a Cauchy sequence of real numbers which has sub-sequence converging to  

prove that  itself converges to  
 

1.4  SUMMARY: 

This lesson is designed to introduce learners to the fundamental concept of numerical 
sequences, exploring their properties, and applying them to real-world contexts. This lesson 
provides a solid foundation for learners to develop their understanding of numerical 
sequences and their applications, preparing them for more advanced mathematical concepts 
and real-world problem-solving. Key Takaways of this lesson are Definitions and theorems 
of numerical sequences, Upper and lower limits of sequences, Applications of sequences in 
mathematics and real-world problems, and Examples and exercises to reinforce 
understanding. 
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1.5  TECHNICAL TERMS: 

 Cauchy Sequence 
 Compact Metric Space 
 Complex Sequences 
 Convergent 
 Diameter 
 Divergent 
 Limit of the Sequence 
 Metric space 
 Monotonically Decreasing 
 Monotonically Increasing 
 Neighbourhood 
 Sequence 
 Subsequence 
 Supremum 
 Upper limit and lower limit 
 

1.6  SELF ASSESSMENT QUESTIONS 
 

1. Calculate  

2. Find the upper and lower limits of the sequence  defined by  ; 

 

3. If  and  are real numbers such that  for every  then prove that  

4. If the sequence  converge to  then prove that the sequence  converges to  

         [Hint: Use the inequality  . 

5. Is the sequence  convergent? 
Ans: Yes, it converges to 0.  
6. Give an example of a sequence  of real numbers such that  converges but  
does not. 
Ans: One such sequence is  where . 

7. If  and  are non-decreasing bounded sequences, and if  prove 

that . 
 

1.7  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

2.   Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 
Dr.U. Bindu Madhavi 



 
 

LESSON-2 

NUMERICAL SERIES 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the concept of numerical series including convergence and 
divergences. 

 To apply series properties for solving mathematical Problems. 
 

STRUCTURE: 

2.1 SERIES 
 

2.2  SOME MORE EXAMPLES WITH SOLUTIONS: 
 
 

2.3    SUMMARY 
2.4    TECHNICAL TERMS 

2.5    SELF ASSESSMENT QUESTIONS 

2.6    SUGGESTED READINGS 

 
2.1  SERIES:  

 
An expression of the form  in which every term is followed 
by another according to some definite law is called a series. If the series contains a finite 
number of terms, it is called a finite series; in case the number of terms is unlimited, it is 
called an infinite series. The above series is symbolically denoted as  

If  then  is called remainder after  terms of the series. 

Dependence of series on sequences: If  then  is called the 

sum to terms or the  partial sum of the series  

Thus we can express the series  as a sequence of the partial sums . In other 

words, the behaviour of the series  is the same as the behaviour of the sequence , 

 
 

2.1.1 Definition : Given a sequence , we define 

 If  converges, say to , we write; 

 and call , an infinite series. We say  diverges if 
it doesn’t converges. 

2.1.2 Theorem:  converges if and only if given ,  a positive integer 

 ,  

Proof: Notice  and apply Cauchy criterion to . 

2.1.3 Theorem: If   
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Proof: Let  

So . 

2.1.4 Remark: (1) If ,  need not converges consider  . If 

 , and  converges,  positive integer  

But  

So  doesn’t converge. 

2.1.5 Theorem: Let . Then  converges if and only if  is bounded above. 

Proof:  so that  is  and  converges 

  is bounded above. 

2.1.6 Theorem: If  for , and if  converges, then  converges. 

If  for , and if  diverges, then  diverges. 

Proof: Given ,  a positive integer  

So  
So that (1) follows. 
If  converges,  converges by (1). 

2.1.7 Theorem: If ,  If ,  diverges. 

Proof: for ,  

 Since  for  

If ,  So  diverges for  

We call , the Geometric series. 
2.1.8 Theorem: (CAUCHY CONDENSATION TEST) 

Let . Then  Converges, if and only if  converges. 

Proof: Let  and  for ,  

  
            

i.e., ,  ......................(1) 

For , 
  

       

       

 
i.e.,  .........................(2) 

From (1) & (2); So  is bounded   is bounded. 
The Theorem follows. 

2.1.9 Theorem :  converges if and only if . 

Proof: If ,  and  diverges. 

So  diverges for  
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If ,  is  and  converges if  

 converges. 

Now    

                          . 

2.1.10  Theorem :  converges if  and diverges if  . 

 Proof: Clearly, sequence  is monotonically increasing sequence of positive 

terms for  

The sequence  is monotonically increasing sequence of positive terms. 

The sequence  is monotonically decreasing sequence of positive terms. 

So by known theorem, we have that  converges if and only if 

 converges. 

 converges. 

 converges 

 converges.........(1)  

Therefore  converges  converges. 

By the above theorem (1.3.9) the series  converges if  

 converges when  

So by (1) the series   converges if  

Again by the same theorem the series  diverges if  

 diverges if  

So by (1) the series   diverges if . 

2.1.11  Note: The series  converges  

 Proof: For each integer  write  

Now for  

 

 
Therefore the sequence  of partial sums is bounded and also monotonically 
increasing sequence. 
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Hence by known theorem  is convergent. 

So by definition, the series  converges. 

2.1.12  Theorem:  

Proof:  and  

Notice  exists.  is  and;  

 

 
By the Binomial Theorem. 

 
 ......................(1) 

Again for ,  is and so; 

 
Fix , and let  

So  

Let  .......................(2) 

By (1) & (2),  and the theorem follows. 

2.1.13  Definition: we define  

2.1.14  Theorem :  is irrational 

Proof: If  is the nth partial sum of , then; 

  

 ..........................(1) 

If  were rational, say  

Then       By (1) 

  

Now  and   are integers so that  is an integer between 0 & 1. This 

is impossible, so  must be irrational. 
2.1.15  Theorem: [Root test] state and prove Root test (or) 

Given  ; put  . Then 

(i) If ,  converges; 
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(ii) If ,  diverges; 

(iii) If  the test gives no information. 

Proof: Let  

(i) Suppose  

Let  be a real number such that  

Since , [by theorem 1.3.8], we know that the series  is convergent 

also since  

 there exists a “+ve” integer  such that  , . 

,  

Since  is convergent, by composition test 

 is convergent 

(ii)  

Since  

We know that there is a sequence  of “+ve” integers such that  

As  there are infinitely many “+ve” integer  

 there are infinitely many “+ve” integer .........(1) 
Now we have to prove that 

 is diverges 
on the contrary suppose that 

 is converges 

. 

So, for   a positive integer   
which is contradiction to (1) 
Therefore,  is diverges. 
(iii) Consider the series  

 and  

Now  

 
But we know that the series  is divergent 

Also   (by theorem 1.3.9) 
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But  is convergent              [by theorem 1.3.9] 

So if , the test gives no information. 
 

2.1.16  Theorem: (The Ratio Test) Let  then  

(1) Converges if  and  

(2) Diverges if . 

Proof: The given series is  

(1)  Suppose that  

Then there exists a real number  such that  

 a “+ve” integer  

 ,  

For any “+ve” integer , 

 

 
 

For any ,  

 
As , 
We know that 

 converges 

  converges 

  converges 

Since for ,  
By comparison test the series 

 converges 
 

(2)  Suppose that , where  is some fixed “+ve” integer 

Then  for all  

we have to prove that series  diverges 

on contrary way suppose that  is converges 

by a know theorem  

therefore   there is a “+ve” integer 

  

Taken  

Then  ......................(1) 

Since ,  

which is a contradiction to (1) 
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Therefore,  diverges. 
 
 

2.1.17  Theorem: For any sequence  of positive numbers, 

(i)  and 

(ii)  

Proof: Let  be a sequence of positive real numbers 

(i) Let  

If  there is nothing to prove 

Suppose  i.e,  

Choose a number  such that  

So ∃ a positive integer  ∋   

 
In particular for any number ,  

 and so on we get  

So for any integer ,  

 

  

 
Since  is arbitrary, we have that  

  

(ii) Let  

If  there is nothing to prove 

Suppose  is a finite real number 

Choose a number  such that  

So ∃ a positive integer  ∋   

 
In particular for any number ,  

 and so on we get  

So for any integer ,  
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Since  is arbitrary, we have that  

 
 

2.2  SOME MORE EXAMPLES WITH SOLUTIONS 
 

2.2.1 Example: Investigate the behaviour (convergence or divergence) of  if 

a) ; 

b)  ; 

c) ; 

d)  for complex values of  

Solution:  

(a) Multiplying  and dividing  by ,  

we find that  which is larger than  

The series  therefore diverges by comparison with the  series . 

Alternatively, since the sum telescopes, the th partial sum is  

Which obviously tends to infinity. 
 

(b) Using the same trick as in part (a),  

We find that , which is less than  

Hence the series converges by comparison with the  series  
 

(c) Using the root test, we find that , which tends to zero as . 

Hence the series converges. 

(Alternatively, since by part (c ) of Known Theorem  tends to  as , we have 

 for all large  and the series converges by comparison with a geometric 
series.) 
 

(d) If  then  so that  does not tend to zero. 
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Hence the series diverges.  

If  the series converges by comparison with a geometric series with  

2.2.2 Example: Prove that the convergence of  implies the convergence of , if 

 

Solution: Since  

It follows that  

Now  converges by comparison with  (since  converges, we have 

 for large  and hence  

Since also converges ( series.  

It follows that  converges. 

2.2.3 Example: If  converges, and if  is monotonic and bounded, prove that 

 converges. 

Solution: We shall show that the partial sums of the series form a Cauchy sequence, 

i.e., given  there exists  such that  if  

To do this, let  (   

so that for  

Let  be an upper bound for both  and  

And let  and  

Choose  so large that the following three inequalities hold for all  and 

 

  . 

Then if  we have, from the formula for summation by parts, 

  

Our assumptions yield immediately that , and 

. 
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Since the sequence  is monotonic, we have  

  

From which the desired inequality follows. 
 

2.3 SUMMARY: 
 

This lesson focuses on helping learners comprehend numerical series, including 
convergence and divergence, and apply series properties to solve mathematical 
problems. Highlights of this lesson are Definitions and theorems of numerical series, 
Convergence and divergence of series, Series properties and applications and Examples 
with solutions and exercises. 

 

2.4 TECHNICAL TERMS: 
 

 Binomial 
 Bounded above 
 Convergence 
 Divergence 
 Geometric Series 
 Infinite Series 
 Irrational 
 Monotonic 

 
2.5  SELF ASSESSMENT QUESTIONS: 

 
1. Investigate the behaviour (convergence or divergence) of  if 

a)  

b)  

2. If  converges, and if  is monotonic and bounded, prove that  
converges. 

3.  

4. . 
 

2.6  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International  
Editions Walter Rudin. 

2.  Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 
Dr. U. Bindu Madhavi 

 



LESSON-3 

POWER SERIES AND MULTIPLICATION OF 
SERIES 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the concept of Power series and Multiplication of series including 
convergence and divergences. 

 To apply Power series and Multiplication of series properties for solving 
mathematical Problems. 

 

STRUCTURS: 

3.1 POWER SERIES 
3.2 MULTIPLICATION OF SERIES 
3.3 SOME MORE EXAMPLES WITH SOLUTIONS 
3.4   SUMMARY 
3.5   TECHNICAL TERMS 
3.6   SELF ASSESSMENT QUESTIONS 
3.7   SUGGESTED READINGS 

 
3.1  POWER SERIES: 

 
3.1.1  Theorem: Given ‘power series’  

Let  and  

Here  

Then  converges for , and diverges for . 

Proof: Applying the root test to  

  
                      

3.1.2 Note: We call , the radius of convergence of . For , we can’t say 
anything define. 
 

3.1.3  Example: Consider the series  Find the radius of convergence of the 
series. 
Solution: Here   

Now  

  

Therefore the radius of convergence of the series . 



Centre for Distance Education 3.2 Acharya Nagarjuna University 
 

3.1.4 Example: Consider the series  

Solution: Here   

Now  

   

  

Therefore the radius of convergence of the series . 

3.1.5 Example: Consider the series  

Solution: Here   

Now  

  

Therefore the radius of convergence of the series . 

 
3.1.6 Theorem: [Abel’s Partial summation formula] 

Given sequence  and , Let  Then for ,  
  

Proof:  
                          
                          

                         . 

 
3.1.7  Theorem: (Dirichlet). 

Let (1) the partial sums  of  be bounded.  

        (2)  

Then  converges. 

Proof: Let . Given , choose . For , 

  

              

              

              
              

[Notice ] 

By Cauchy Criterion,  converges. 
 

3.1.8  Corollary: (Leibnitz Test) 
If ,  converges. 
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Proof: Take  in Dirichlet’s test 

Then  

 
3.1.9 Theorem:  Suppose 

(i)  

(ii)  

(iii) . Then  converges. 

Proof:  Suppose  

(i)  

(ii)  and 

(iii) . 

For integer  write  and  

Now the partial sums sequence of series  form a bounded sequence and  

 and  

So the above theorem  converges. 

 converges. 

 
3.1.10  Definition: The series which satisfies the condition (ii) in the above theorem is called 

as alternating series. 
 

3.1.11  Theorem: Suppose the radius of convergence of  is  and  suppose 

  Then  converges at every point on the 

circle  except possibly at . 
 
Proof: Suppose that the series  converges for all  such that  

Also suppose that   

For any integer  write  and  

For  let  

Then  

 if  and  

Therefore  where  if  and  

So the partial sums  of  form a bounded sequence and  

 and  

So the known theorem  converges. 

Here,  converges if  and . 
 

3.1.12  Theorem: If  converges, then  converges. 

Proof: Given  for  
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. 

Since ,  converges. 

 
3.1.13  Remarks: If  converges, we say  converges absolutely, for , 

absolute converges is same as convergence. 

If  converges,  need not converges  converges by Leibnitz test, but 
not absolutely. 
 

3.1.14  Theorem: If  and  then  and  for 

any fixed . 

Proof:  Suppose that  and  

For  write   and  

Then  and  are the sequences of partial sums of  and  respectively.  

Also for  

So,  is a sequence of partial sums of the series  

Since  and   

we have that  and  

So by a known theorem,  and 

, where  is fixed constant.  

Hence,  and  for any fixed  
 

3.2   MULTIPLICATION OF SERIES: 
 

3.2.1 Definition: Given  and , we define  and we call  

the Cauchy product of  and . 

3.2.2 Remark: If  and  converges, the Cauchy product of  and  need not 
converge. 

Let ,  and  converges by Leibnitz test. 

 

 
So that  

Hence  doesn’t converges. 

3.2.3 Theorem: (Mertens) 
If  converges absolutely to  and  converges and  

Proof: Let ,  and  
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Let  

We will show that  so that  which proves the theorem. 

Let  

Since  given  choose   

So  

 
Fix  and let  

Then  since  

Let  Then  and this completes the proof. 
 

3.3  SOME MORE EXAMPLES WITH SOLUTIONS: 
 

3.3.1 Example: Find the radius of convergence of each of the following series 
(a)  

(b)  

(c)  

(d)  

Solution: (a) The radius of convergence is  

Since  satisfies  

(b) The radius of convergence is infinite,  

Since  satisfies  

( c) The radius of convergence is  

Since  satisfies  

(d ) The radius of convergence is  
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Since  satisfies  

 

3.3.2 Example: Suppose that the coefficients of the power series  are integers, 
infinitely many of which are distinct from zero. Prove that the radius of convergence 
is at most  

Solution: The series diverges if , since its general term does not tend to zero. 

(Infinitely many terms are larger than  in absolute value). 
 

3.3.3 Example: Suppose   and  diverges. 

(a) Prove that  diverges. 

(b) Prove that  and deduce that  diverges. 

(c) Prove that  and deduce that  diverges. 

(d) What can be said about  and ? 

Solution: (a) If  does not remain bounded,  

then  does not tend to zero, 

and hence the series  diverges. 

If  for all  then  

And hence again the series is divergent. 

(b) Replacing each denominator on the left by , 

We have  

 

 

It follows that the partial sums of the series  do  not form a Cauchy sequence. For, 

no matter how large  is taken, if  is held fixed, the right hand side can be made 

larger than  by taking  sufficiently large (since  

(c ) We observe that if then 
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Since the series  converges to  

It follows by comparison that  converges. 

(d ) The series  may be either convergent or divergent. 

If the sequence  is bounded above or has a positive lower bound, it definitely 

diverges. 

Thus if  each term is at least  and so the series diverges. 

If  for all  then each term is at least , and once again the series is 

divergent. 

     In general, however, the series  may converge. 

For example let  if  is not a perfect square and 

 if  is a perfect square. 

The sum of  over the non squares obviously converges by comparison with the 

series,  

As for the sum over the square integers it is which converges by comparison 

with the  series,  

Finally, the series  is obviously majorized by the  series,  hence 

converges. 

3.3.4 Example: Suppose  and  converges. Put  

(a) Prove that   if  and deduce that  diverges. 

(b) Prove that  and deduce that  converges. 

Solution: (a) Replacing all the denominators on the left-hand side by the largest one , 

We find  
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Since  

       As in the previous problem, this keeps the partial sums of the series  from 

forming a Cauchy sequence.  

No matter how large  is taken, one can choose  larger so that the difference 

 is at least  since  as  

(b ) We have . 

Dividing both sides by  now yields the desired inequality. 

 Since the series  converges to ,  

It follows by comparison that  converges. 

3.3.5 Example: Prove that the Cauchy product of two absolutely convergent series 
converges absolutely. 

Solution: Since both the hypothesis and conclusion refer to absolute convergence, we may 
assume both series consist of non negative terms. 

We let  and  

We need to show that  remains bounded, given that  and  are bounded. 

To do this we make the convention that  in order to save ourselves from 

having to separate off the first and last terms when we sum by parts. 

We then have  
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Thus  is bounded, and hence approaches a finite limit. 
 

3.3.6 Example: If  is a complex sequence, define its arithmetic mean  by 

  

(a)  If  prove that  

(b) Construct a sequence  which does not converge, although  

(c) Can it happen that  for all  and that  even though  

(d)  Put  for  Show that  

Assume that  and that  converges. Prove that  converges. [This 

gives a converse of (a), but under  the additional assumption that  

(e) Derive the last conclusion from a weaker hypothesis: Assume   for 

all  and   Prove that   by completing the following outline: 

     If  then  

              

For these  

              . 

Fix  and associate with each  the integer  that satisfies 

                           

Then  and   

Hence  

Since  was arbitrary,  

Solution: Let  

Let  and   

let  be the first integer such that  for all  
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 Let , 

Then if  we have   

 

 

The first sum on the right-hand side here is at most , and since 

, this sum is at most   

The second sum is at most , which is at most  

Thus  if  which was to be proved.  

(b ) Let  

Here  is 0 if  is odd and  if  is even. 

Thus  though  has no limit.  

(c ) Let  if  is not a perfect cube and  if  is a perfect cube.  

Then if  we have 

 

 

The first sum on the right tends to zero by part (a) applied to the sequence  

 for  

As the last term, since  it is less than , which tends to zero as  

Since  it follows that  tends to infinity as  tends to infinity, and hence 

we have  even though  
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(d ) If we set  we have  

Then  

 

 

Which was to be proved. 

If  then the expression on the right-hand side tends to zero by part (a) with  

replaced by   Hence  

(e )  If  we have  

 

 

 

If we multiply both sides of this equation by , and then transpose the left-hand side 

to the right and the term  to the left, we obtain  

 

Adding  to both sides then yields the result.  

We then have 

. 

Since the function  is decreasing, the maximal value of the right hand 

side here is reached with   so that  as asserted.  
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       When we choose  to be the largest integer in , we clearly have  

Since  is fixed, we can assume  

The inequality  can easily be converted to  and the 

inequality  likewise becomes . 

 The first of these implies that  as , and we have 

 for all  

This implies that the limit of any subsequence of  is at most  and since  is 

arbitrary, every convergent subsequence of  converges to zero. 

This, of course, implies that  tends to zero, so that if  then  
 

Exercise For Lesson-2 & Lesson-3 
 
Test for convergence, the following series: 

1. (i) (ii)  

Ans: (i) Divergent   (ii) Convergent 

2.                

Ans: Divergent 

3.           

Ans: Convergent 

4.        

Ans: Convergent 

5.        

Ans: Divergent 

6.          

Ans: Convergent if  and Divergent if  

7.       

Ans: Convergent 

8.         

Ans: Convergent 
9.  (i)  (ii)        

Ans: Both Divergent 
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10.   

Ans: Convergent if  divergent if  

11.   

Ans: Convergent if  divergent if  

12.         

   Ans: Convergent 

13.     

Ans: Convergent  if  and divergent if  
14.  Show that the series 

  converges if  and 

diverges if  

15.  Test for convergence the series whose  terms are (i)  (ii)  

Ans: (i) Convergent if  or  divergent if   

(ii) Convergent if  and divergent if  

16.    

Ans: Convergent if  Divergent if  

17.      

  Ans:  Divergent 

18.   

Ans: Convergent if  and divergent if  

19.   

Ans: Convergent if  divergent if  

20.   

Ans: Convergent if and divergent if  

21.   

Ans: Convergent if and divergent if  

22.   

Ans: Convergent if and divergent if  

23.          

  Ans: Convergent 

24.   

Ans: Convergent if and divergent if  and when  then 

convergent if  and divergent if  
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25.   

Ans: Convergent if  divergent if  

26.  If  where  is a positive integer, show that the series 

 is convergent if  is positive and divergent if  is negative 
or zero. 

 

3.4  SUMMARY:  

This lesson provides a comprehensive introduction to Power series and Multiplication 
of series including Convergence and divergence. Key concepts are defined, and 
theorems are supported with proofs. Additionally, examples are provided to illustrate 
the applications of these concepts. 

 

3.5  TECHNICAL TERMS: 

 Alternating series 
 Bounded sequence 
 Converges 
 Diverges 
 Limit 
 Partial summation 
 Power Series 
 Radius 
 Supremum 

 

3.6  SELF ASSESSMENT QUESTIONS: 

1. Find the radius of convergence of each of the following series 
a)  

b)  

2. Suppose that the coefficients of the power series  are integers, infinitely many 

of which are distinct from zero. Prove that the radius of convergence is at most  

3.  

4. What can be said about  and ? 

5.   Convergent if and divergent if . Is 

it true or false. 

6.   Convergent if and divergent if . Is it true or 

false. 
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3.7  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

2.  Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 

Dr.U. Bindu Madhavi 



LESSON-4 
 

LIMITS OF FUNCTIONS AND CONTINUOUS 

FUNCTIONS ON METRIC SPACES 
 

 

OBJECTIVES: 
 
The objective of the lesson is to help the learners to understand 
 
 To understand the concepts of limit and continuity of functions on metric spaces that 

is essential in the study of real world applications such as modeling motion, force and 
energy. 

 To develop problem solving skills in calculus and analysis. 

 

STRUCTURE: 

4.1   INTRODUCTION 
4.2   LIMITS OF FUNCTIONS 
4.3   CONTINUOUS FUNCTIONS 
4.4   SUMMARY 
4.5   TECHNICAL TERMS 
4.6   SELF ASSESSMENT QUESTIONS 
4.7   SUGGESTED READINGS 
 
 

4.1 INTRODUCTION:  
 

In this lesson the notion of metric space, open set, closed set, compact set connected and limit 

of a function from one metric space into another is introduced. If  and  are metric spaces 

and  and f maps  into  and  is a limit point , then  if and only if 

 for every sequence  in  such that  for all  and 

 is proved. Next the continuity of a function from a metric space into a 

metric space is defined. It has also been proved that if  and  are metric spaces,  and 

maps  into  and if   is a limit point of , then is continuous at  if and only if 

. Further it is proved that a mapping f of a metric space  into a metric 

space  is continuous on  if and only if  is open in  for every open set  in . 
 

4.1.1 Definition: Let  denote the set of all positive integers and for any ,  be the set of 

integers  

A Set  is said to be 

(i)    finite, if  for some n 

(ii)    infinite, if it is not finite. 
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(iii) countable or denumerable if  

(iv) atmost countable, if it is either finite or countable 

(v)    uncountable, if it is neither finite not countable 
 

4.1.2 Note: 

(1) The set  of all integers is countable 

(2) If  is countable and  is an infinite subset of  then  is countable 

(3) The union of countable family of sets, each of which is countable also countable. 

(4) The Cartesian product of two countable sets is countable. 

(5) The set of rational numbers is countable. 

(6) Every segment in R is uncountable 

(7) The set of real numbers R is uncountable. 
 

4.1.3 Definition : Let  be a non-empty set. For any . We associate a real number 
 called the distance between  and  satisfying the following conditions. 

(i)    

(ii)  if and only if  

(iii)  

(iv)  for any . 

Then  is called a distance function or a metric. A set  on which a metric  is define 
is called a metric space and is denoted by . 
 

4.1.4 Definition : Let  be a metric space 

(i)    A neighborhood of the point  is the set  and it is denoted 
by . 

(ii) Let . A point  is a limit point of the set , if every neighborhood of  
contains a point  such that  and . 

(iii) A set  is said to be closed if every limit point of  is a point of  . 

(iv) A point  is said to be an interior point of , if there is a neighborhood  of  such 
that · 

(v) A set of  is said to be open, if every point of  is an interior point of . 

(vi) Every neighborhood is an open set. 
 

4.1.5 Definition: Suppose  is a metric space and . A collection of  open sets in 
 is said to be an open cover, if . 
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4.1.6 Definition: A subset  of a metric space  is said to be compact, if every open cover 

of  contains a finite sub cover. 

(i.e., there exists finite collection  ) 

such that . 
 

4.1.7 Note: (1) Every compact subset of a metric space is closed. 

           (2) Every closed subset of a compact metric space is compact. 
 

4.1.8 Definition: Let  be a metric space and  is subset of . 

(1) The set  is said to be perfect set, if  is closed and if every point of  is a limit point 
of . 

(2) Two subsets  and  of  are said to be separated, if  a n d  .  

(3) The subset  of   is said to be connected, if it is not union of two non empty separated 
sets. 

 

4.2  LIMITS OF FUNCTIONS:  
 

4.2.1 Definition: Let  and  be metric spaces; suppose ; f maps  into  

and  is a limit point of  . If there is a point  with the property that for every 

, there exists a  such that  for all points  for which 

, then we write  as , or . 
 

4.2.2 Note: Suppose  and  for all  and 

also suppose ,  is a limit point of . Then  is said to have a limit 

as  , if there is a  satisfying the condition : for every , there is a 

 such that  for all  with . 
 

4.2.3 Example: Suppose  is defined by 

 Then  

Let . Take . Then for any  with  

. 

  
 

4.2.4 Theorem: Let  and  be metric spaces and  and f maps  into  and 

 is a limit point of . Then  if and only if  for 
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every sequences  in  such that  for all  and . 

Proof: Given that ,  are metric spaces and  and f maps  into  and  is limit point of 
. 

Suppose  

Let  be any sequence in  such that  and  

Let  Since , there exists  such that  

if    and  ……..(1) 

Since  and , there exists a positive integer  such that 
 for all  

Then, by (1)  for all  

  

Conversely suppose that  

Now we will show that there exists a sequence  of points in  such that  and 
 does not imply  

Since  there exists  such that for every , There exists a 
point  (depending on  ) with  but . This implies 

for each , there exists a point  such that  

but , Consequently  

Now we will show that  for all  and  

Since  we have  for  

Let . Choose a positive integer  such that . Now for all . Consider 

 

This implies  for all  and hence  

Thus there exists a sequence  of points in  such that  and  
but . 

4.2.5 Corollary: Suppose  is mapping of a metric space  into a metric space 

. If  exists in , then it is unique. 

    Proof:  Suppose  exists in . 

 Suppose  and  where . 
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Claim:  

Let  be any sequence of points in  such that  and . Then by 
the above theorem,  and . So  is 0, sequence of 
points in  such that ,  and : since limit of a sequence 
is unique. 

We have  
 

4.2.6 Definition: Let  be a metric space and let  and  be complex valued 
 

functions defined on . Now we define , ,  as follows. 

Let . Define  

        

and  

4.2.7 Definition: Let  and  be functions defined from metric space  into  

Then we define 

 
                    and 

 for any real  and for all . If  and  are real valued functions and if 
 for all  we write . 

 

4.2.8 Theorem: Suppose  is a metric space and ,  are complex valued functions 

defined on . Suppose  is a limit point of . If  and  
then 

(i)  

(ii)  

(iii)  provided  

Proof: Since  by Theorem 4.2.4. We have  for any 
sequence  of points in  with  and  for all . 

Since  by Theorem 4.2.4. We have  for any sequence 

 of points in  with  and  for all . 

(i) Suppose that  is a sequence of points in  such that  and  

for all . Consider 
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Therefore,  

(ii) Suppose that  is a sequence of points in  such that  and  

for all . Consider 

  

                             

                             

Therefore,  

(iii)Suppose that  is a sequence of points in  such that  and  

for all . Consider 

  

                             

                             

Therefore, . 
 

4.3 CONTINUOUS FUNCTIONS: 
 

4.3.1 Definition: Suppose  and  are metric spaces, ,  and  

maps  into . Then  is said to be continuous at  if for every . There exists a  

such that  for all points  for which . If  is 

continuous at every point of  then  is said to be continuous on . 
 

4.3.2 Definition: Let  be a metric space and : A point  is said to be an 

isolated point of  if there is a neighborhood  of  such that  has just one point  

of the set . 

That is  and  

Therefore if  is an isolated point of , then the condition, in definition 4.3.1, 

 for all  with  holds obviously. Hence if  is an 

isolated point of . Then is continuous at . 
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4.3.3 Example: Define  as 

 

Then . But . So  is continuous at . 

4.3.4 Example: Define  as  for all . Then  

and is equal to . So  is continuous at . 
 

4.3.5 Theorem:  Let  and  be metric spaces, , and  maps  into . If 

 is a limit point of , then  is continuous at  if and only if  

 
Proof: Consider  is continuous at  if and only if for each , there exists a  
such that  for all points  for which  if and only if  

  (   is a limit point of ). 

4.3.6 Theorem: Suppose ,  and  are metric spaces, ,  maps 

 into ,  maps the range of , , into  and  is the mapping of  into  defined 

by  for all . If  is continuous at a point  and if  is 

continuous at the point , then  is continuous at . 

Proof: Suppose  is continuous at  and  is continuous at the point . Let . 

Since  is continuous at , there exists an  such that 

 whenever  and ……(1) 

Since  is continuous at , there exists a  such that  

whenever  and …….(2). 

Suppose  such that . Then consider 

 (from (1) and (2)) 

Thus for , there exists  such that 

 whenever . Therefore  is continuous at . 

In the above theorem,  is called the composition  and  and we write . 
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4.3.7 Theorem: Suppose  is a metric space and ,  are complex valued functions 

defined on . If  and  are both continuous at , then ,  and    (if ) 

are continuous at . 

Proof: Suppose  is a metric space and ,  are complex valued functions defined 

on  is continuous at p. So , , and    are continuous at  

Case (ii): Suppose p is a limit point of X. 

By Theorem 4.3.5, f is continuous at p if and only if  and  is  
continuous at p if and only if 

. Then by Theorem 4.2.8 

  

  is continuous at . (By Theorem 4.3.5) 

Consider  (By Theorem 4.2.8) 

By Theorem 4.3.5,  is continuous at . Suppose  

Consider  (By Theorem 4.2.8) 

By Theorem 4.3.5,  is continuous at . 

4.3.8 Theorem: ( a) : Let  be real functions on a metric space , and let  be the 

mapping of  into  defined by  ; then  is 

continuous if and only if each of the functions  are continuous. 

(b): If  and  are continuous mappings of  into  then  and  are 

continuous on . 

Proof: Given that  is mapping of a metric space  into  defined by 

 where  are real valued functions defined on 

. 

(a) : Assume  is continuous on . 

Let  and let . Since is continuous at  . Then there exists a  such that 

 whenever , for  

 for  
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 for  and for  

 is continuous at  for  

Since  is arbitrary,  is continuous on . 

Now, we will show that  is continuous on . 

Let  and let . Since each  is continuous at , there exists a . 

Such that  whenever  and for . 

Take . 

Suppose . Then  for . 

 for . 

Consider  

  

Therefore  is continuous at . 

Since  is arbitrary,  is continuous on . 

(b) : Suppose  and  are continuous mappings of  into defined by 

 and  with 

;   are real valued functions defined on . Since  and  are 

continuous on , by (a), each  is continuous on  and each  is continuous on . Then by 

Theorem 4.3.7.  and  are continuous on  for . Since 

 for all , by (a),  is 

continuous on  for . Since  is continuous on  for  we have  

is continuous on  and hence  is continuous on . 

4.3.9 Example: Every polynomial with complex coefficients is continuous at every point of 

. For, let  where  are complex 
numbers. 

Consider as a function. 

Define   as  for all . Then  is continuous at every point of  for 

 is given, taking , for all  with  we have 
 is continuous. 
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 is continuous 

…………………………………………… 

…………………………………………… 

 is continuous 

It is easy to verify that every constant function is continuous. 

Therefore  

  

  

…………………….. 

……………………. 

 are all continuous on . 

Hence  is continuous on . 
 

4.3.10  Definition: Suppose  is a mapping where  and  are any two sets. For any 

,  is called the image of  under  For any , the set 

 is called the inverse image of  under  and is denoted by 

. That is  . 
 

4.3.11 Theorem: Suppose  is a mapping. Then for every set , 

(i)  

(ii)  

Proof: (i) Consider  and  

        and  

                                                     

                                      

(ii) Suppose  

                                           for some  

                                           for some  with  
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 . 
 

4.3.12 Theorem: A mapping  of a metric space  into a metric space  is 

continuous on  if and only if.  is open in  for every open set  in . 

Proof: let  be a mapping 

Suppose  is continuous on . 

Let  be an open set in . 

Now we will show that every point in  is an interior point of it. 

Let . Then . since  is an open set in , there exists  such that 

. Since  is continuous on .  is continuous at . Then there exists  

such that  whenever  

This implies  whenever . That is,  whenever 

. That is  whenever  and hence . Thus 

 is open in  whenever  is open in .  

   is an interior point of . Hence  is open in . 

Thus  is open in  whenever  is open in . 

Conversely suppose that  is open in  for every open set  in . 

Now we will show that  is continuous at ever point of let  and let  now 

 is an open set in . By our supposition  is an open set in  and 

.Then there exists  such that 

. This implies  

That is, if , then . This shows that  is continuous at . 

Since  is arbitrary.  is continuous on . 

Thus  is continuous on  if and only if  is open in  whenever  is open in . 
 

4.3.13 Corollary: A mapping of a metric space  into a metric space  is continuous 

if and only if  is closed in  for every closed set  in . 

Proof: let  be a function. Let  be any closed set in . Consider  is continuous 

on  if and only if   is open in  (by Theorem 4.3.12) if and only if   is 
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open in  (  if and only if  is closed in ). Thus  is continuous 

on  if and only if  is closed in  for every closed set  in . 
 

4.3.14 Problem: If  is a continuous mapping of a metric space  into a metric space , 

prove that  for any subset  of . 

Solution: Suppose  is a continuous mapping of a metric space  into a metric space  

and . Now  is a closed subset of  containing . Since f is continuous on 

X, by corollary 4.3.13,  is a closed set in X and . Since E is 

the smallest closed set containing E. we have . This implies 

. Thus for any sub set E of X, . 
 

4.3.15 Problem: Let  be a continuous real function on a metric space . Let  (the 

zero set of  be the set of all  at which . Prove that  is closed. 

Solution: Given that  is a continuous real function on a metric space  and 

. 

Claim:  is a closed set. 

Let y be a limit point of  in . Then by a known theorem, there exists a sequence 

 of points in  such that . Since  is continuous, by Theorem 4.2.4, and 

Theorem 4.3.12. we have  converges to . This implies 

 (  for all ) and hence , This shows that  
is a closed set in X. 
 

4.3.16 Problem: Let  and  be continuous mappings of a metric space  into a metric 

space  and let  be a dense subset of . Prove  is dense in . If  

for all , prove that  for all  (In other words, a continuous mapping 
is determined by its values on a dense subset of its domain) 

Proof: Given that  and  are continuous mappings of a metric space  into a metric space 
 and  is a dense subset of ,  

Claim:  is dense in . That is, . Clearly  

Let . If , then  

Suppose  in this case we will show that,  is a limit point of . 

Since ,  for some . Then . 

Since  is dense in ,  is a limit point of . Then by a known result, there exists a sequence 
 of points in  such that  converges to . Since  is continuous and  converges 

, by a known result.  converges to . Now  is a sequence of points in 
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 such that  converges to . This implies  this shows that 
 and hence . 

Suppose  for all . 

Now we will show that  for all  

Let . Since  is dense in , there exists a sequence  of points in  such that  
converges to  Since  and  are continuous on , we have  converges to  
and  converges to . 

Consider  

 

(  for all  and ) 

  for all . 
 

4.3.17 Problem: The function  given by  is continuous on . 

Solution: Let  and  

Now . 

If  so that  

Then  

If  

So if  then  

,  so f is continuous on R. 
 

Model Examination Questions 

1. If  and  are metric spaces and  and if  maps  into  and  is a 

limit point of , then show that  if and only if 

 for every sequence  in  such that  for all  and 

. 

2. Suppose ,  and  are metric spaces and  maps  into  and  maps  into  and 

 is the mapping of  into , defined by  for all . If  is 

continuous on  and  is continuous on , then show that  is continuous from  

into . 
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3. Show that a mapping of a metric space  into a metric space  is continuous on  if 

and only if  is open in  for every open set  in  for every open set  in 

. 

4. Let  and  be continuous mappings of a metric space  into a metric space  and 

let  be a dense subset of . Prove that  is dense in . If  for 

all . then prove that  for all . 

Exercises 

1. Suppose  is a real function defined on  which satisfies 

 for every . Does this imply that  is 
continuous? 

2. If  is a real continuous function defined on a closed set . Prove that there 

exist continuous real functions  on  such that · for all . 
 

Answers to Self Assessment Questions 

For 1 see definition 4.3.1 

For 2, see example 4.3.3 

For 3, see problem 4.3.15 
 

4.4  SUMMARY: 

This lesson covers the fundamental concepts of limits and continuity of functions on 
metric spaces, essential for modeling real-world applications such as motion, force, and 
energy. The lesson aims to develop problem-solving skills in calculus and analysis. 
And also covers Definitions of key concepts, Proofs of relevant theorems, Corollaries 
to reinforce understanding, and Practice problems to develop problem-solving skills. 

 

4.5  TECHNICAL TERMS: 

 Compact 
 Complex valued function 
 Connected 
 Continuous 
 Countable or Denumerable 
 Finite 
 Function 
 Infinite 
 Interior point 
 Isolated point 



Analysis-I 4.15 Limits of Functions and ….  
 
 Metric spaces 
 Neighbourhood 
 Open cover 
 Perfect set 
 Polynomial 
 Range 
 Real valued functions 
 Subset 
 Uncountable 
 Union 

4.6  SELF ASSESSMENT QUESTIONS: 

1.  When do you say that a function  from a metric space into a metric space is 
continuous? 

2. Show that the function  defined by  for all  is 

continuous at . 

3. Let  be a continuous real function on a metric space . Let  be the set of all 

 at which . Show that  is closed. 

 
4.7  SUGGESTED READINGS: 
 
    1.  Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International    
          Editions Walter Rudin. 

     2.  Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition,    

          1985. 
 

Prof. B. Satyanarayana 
 



 

 

LESSON-5 

CONTINUITY, COMPACTNESS AND 

CONNECTEDNESS 
 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the concepts of continuity, compactness and connectedness. 
 To develop problem solving skills using continuity, compactness and connectedness. 

 

STRUCTURE: 
 

5.0 INTRODUCTION 
5.1 CONTINUITY AND COMPACTNESS 
5.2 CONTINUITY AND CONNECTEDNESS 
5.3  SUMMARY 
5.4  TECHNICAL TERMS 
5.5  SELF ASSESSMENT QUESTIONS 
5.6  SUGGESTED READINGS 

 

5.0  INTRODUCTION: 
 

In this lesson the behaviour of continuous functions-when they are defined on compact 
sets or connected sets is discussed. It is proved that if  is a continuous mapping of a compact 

metric space  into a metric space , then  is Compact. It has also been proved that a 
continuous 1–1 mapping of a compact metric space onto a metric space is a homomorphism. 
Further the uniform continuity of a function from a metric space into another metric space is 
defined. It is also proved that a continuous mapping of a compact metric space into a metric 
space is uniformly continuous Further it is proved that continuous image of a connected set is 
connected. 

 

5.1  CONTINUITY AND COMPACTNESS: 
 

5.1.1 Definition: A mapping  of a metric space  into  is said to be bounded if there 

exists a real number M such that  for all . That is  is bounded if 

the image  is a bounded set in . 
 

5.1.2  Theorem: Suppose  is a continuous mapping of a compact metric space  

into a metric space . Then  is compact. 

Proof: Suppose , is a compact metric space and  is a continuous mapping. Let  
be an open cover of   in . Then . Since  is continuous on  and  is open 

in  for each  the inverse image  is open in  for each . Also it is clear that 
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. This implies that  is an open cover for X. Since  is 

compact, there exists  such that . This 

implies . Therefore  is compact. This theorem can also be stated as “The 

image of a compact metric space under a continuous mapping is a compact metric space or 
the continuous image of a compact metric space is compact”. 

5.1.3 Theorem: If  is a continuous mapping of a compact metric space  into then  

is closed and bounded. Thus  is bounded. 

Proof: Suppose  is a continuous mapping of a compact metric space  into. Then by 

Theorem 5.1.2,  is a compact sub set of . Since every compact subset of  is 

closed and bounded,  is closed and bounded. This implies there exists a real number M such 

that  for all . Therefore  is bounded. 
 

5.1.4 Corollary: If  is a compact metric space and is a continuous real valued function on 

, then  is bounded. 

Proof: Taking , the corollary follows. 
 

5.1.5 Theorem: Suppose  is a continuous real function on a compact metric space  and 

, . Then there exist points  such that  and 

. 

Proof: Let  be a compact metric space and  be a continuous real function on . Then by 

Theorem 5.1.3,  is closed and bounded. Since  is bounded, we have  and 

 exist in . Since  is closed in , by a known theorem,  
and . This implies  and , for 

some . Thus there exist  such that  and . 
 

5.1.6 Note: The notation in the above theorem means that  is the least upper bound of the 

set of all numbers , where  ranges over  and that  is the greatest lower bound of this 
set of numbers. 
 

5.1.7 Note: The conclusion in the above theorem may also be stated as follows. There exist 
points  and  in  such that  for all . that is,  attains its 

maximum (at ) and minimum (at ). 
 

5.1.8 Theorem: Suppose  is a continuous 1-1 mapping of a compact metric space  onto a 

metric space . Then the inverse mapping  defined on  by  is a 

continuous mapping of  onto . 

Proof: Suppose  is a continuous 1-1 mapping of a compact metric space  onto a metric space 

. To show  is continuous, by Theorem 4.3.13, it is enough, if we show that  is open in 

 for every open set  in . Let  be any open set in . Then  is a closed subset of . Since 

every closed subset of a compact metric space is compact, we have  is a compact subset of . 
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Since  is continuous on , by Theorem 5.1.2  is a compact subset of . Since every 

compact subset of a metric space is closed, we have  is closed in . Since  is 1-1 and onto, 

. This implies  is open in . Thus  is continuous. 
 

5.1.9 Definition: A one-one, onto function  of a metric space  onto a metric space  is 

said to be a homomorphism if both  and  are continuous. 

5.1.10  Note: By theorem 5.1.8, a one-one, onto continuous function  on a compact 
metric space is always a homomorphism. 

5.1.11  Definition: Let  be a mapping of a metric space  into a metric space . 

We say that  is uniformly continuous on ; if  or every  there exists a  such that 

 for all  and  in  for which . 

5.1.12  Example: Define  as  for all . Then  is uniformly 
continuous 

For, let . Take  , suppose  such that . 

Consider .  

Which implies, if  whenever . 

  is continuous. 

5.1.13  Note: Every uniformly continuous function is continuous but the converse need not to be 
true. 

Proof: For, suppose  is a uniformly continuous function from a metric space  into a 

metric space . Let . Since  is uniformly continuous on ; there exists a  

such that  whenever ................(1) 

Let . Let  such that . Then by (1), .  

Therefore  is continuous at . Since  is arbitrary, we have  is continuous on . Thus 
every uniformly continuous function is continuous. In general the converse is not true. For, 
consider the following example. 

5.1.14  Example: Define  as 
 
for all . First we show that  is 

continuous  

Let  and . Choose a . Such that  

Consider  

.........................................(1) 

Suppose  such that . Then . 

 .....................................(2) 



Centre for Distance Education 5.4 Acharya Nagarjuna University 

 

Consider  

 (by (1) and (2)) 

This shows that  is continuous at  and hence  is continuous on . 

Now we will show that  is not uniformly continuous on . 

Then for , there exists  such that  whenever 

.............(3) 

Since , there exists a positive integer  such that . Consider 

 

Now, , such that  

Then by (3), , a contradiction. 

So,  is not uniformly continuous. 

Thus  is a continuous function but not uniformly continuous. 

5.1.15  Theorem: Let  be a continuous mapping of a compact metric space  into a 

metric space . Then  is uniformly continuous on . 

Proof: Given that  is a continuous mapping of a compact metric space  into a metric space 

. 

Let . Since  is continuous on , for each , there exists a positive number 

, such that  with  

Write . Then  is a neighbourhood of  and hence an open 

subset of  

Now  is a class of open sets in . It is dear that  is an open cover for . 

Since  is compact, there exists  such that ........(1) 

Take . Then . 

Now let  be such that . By (1) there exists an integer  with 

. 

such that . This implies . 

Also, .  

Then  and .  
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Consider  

      

    . 

This shows that  is uniformly continuous on . 

5.1.16  Theorem: Let  be a non-compact set in  . Then 

5.1.16.1 There exists a continuous function on  which is not bounded. 

5.1.16.2 There exists a continuous and bounded function on  which has no maximum. If, in 

addition,  is bounded, then 

5.1.16.3 There exists a continuous function on  which is not uniformly continuous. 

Proof: Given that E is a non-compact subset of  .Since E is a non-compact subset of  
,then either E is bounded and E is not closed or E is closed and E is not bounded or E is not 
closed and not bounded.  

Case (i) :  Suppose  is bounded and  is not closed. Since  is not closed, there exists a point 

 such that  is a limit point of  and . 

Define  as  for all . 

Then  is continuous on . 

Now we will show that  is not bounded. That is,  is not bounded. Since  is a limit point 

of  , there exists a sequence  of points in  such that  as . This implies 

 as  and and consequently  as . 

Let . Since  as , there exists a positive integer  such that  

for all . This, implies  for all . Therefore  is not bounded; i.e,   
is not bounded. 

Next we will show that  is not uniformly continuous on . First, we show that 

) is not bounded for all : Let  be any real number. 

It is clear that  is bounded. Now we will show that  is a limit point of 

. Let . Put  

Consider  

                                                                (  is a limit point of ) 

This implies that  and hence limit point of . 

Since , we have  . So  is a bounded set and  is a limit point 

of  such that . Therefore by the above argument,   is 

not bounded. Since,  is arbitrary  is not bounded for all . 
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Let  and . Let  .Then  and  and   

(  ) 

Take . 

Since  is not bounded, there exists  such that  

Now  and, . This implies that  and hence 
 

Also . Thus there exist  such that  and . 

Therefore  is not uniformly continuous on . 

So (a) and (c) are proved. 

(b) Define  as , for all . 

Then  is continuous on . Also  for all . 

This implies  is bounded. 

Now, we will show that  

Clearly,  is an upper bound of . 

Now we will show that . 

If possible suppose that . Then . Now we will show that there exists  

such that . 

Take , since  is a limit point of . Choose 

. Then  and 

  

 

 
Thus there exists  such that g(x)>p, which is a contradiction to the fact that  is an upper 

bound of the set . Therefore . Hence . 

This shows that  has no maximum. 

Thus if  is bounded, then (a),(b) and (c) are proved. 

Case (ii) : Suppose  is not bounded. 

(a) Define  as  for all . Then  is continuous on  and  is not 

bounded on . 

So (a) is proved. 

as  for all . Then  is continuous on  and I is not 
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(b) Define  as  for all . 

Then  is continuous on . Since  for all ,  is bounded. 

Now we will show that  has no maximum. For this we will show that . 

Since  for all , we have 1 is an upper bound of . Let  be any 

upper bound of . If possible suppose that . Then . 

Now we will show that there exists  show that . 

Since  is not bounded, there exists  such that 

 

 

, which is a contradiction to the fact that p is an upper bound of 

. 

Therefore  and hence  

Thus  is no maximum. 

Note: (c) Would be false if boundedness were omitted from the hypothesis. 
 

5.1.17  Example: Let  be the set of all integers. Then  is a non-compact subset of  which 

is not bounded. Then every function defined on  is uniformly continuous. For, let  be any 

function from  into . Let . Choose  such that . Suppose  such 

that . Then . This implies . Hence  is uniformly 

continuous on . 

5.1.18  Examples :  

(1) Let  

Let   , then there exists a  

 

Now  

If  

If , then  is a continuous on . 

We will show  is not uniformly continuous on  given . Let  be as in 

uniform continuity of . Choose  such that  . 

 and  
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  is not uniformly continuous on . 

(2) let  

Let , let  be as in uniform continuous. Choose ‘+ve’ integer  and  such 

that  

 and  

As before  and  

  is not uniformly continuous on . 

(3) let  

If  and let  

Then  is uniformly continuous on . 
 

 

5.2  CONTINUITY AND CONNECTEDNESS 
 

5.2.1 Theorem: If  is a continuous mapping of a metric space  into a metric space  a if 

 is a connected subset of , then  is connected. 

Proof: Suppose  is a continuous mapping of a metric space  into a metric space  and is 

a connected subset of . 

Claim:  is a connected subset of  

If possible suppose that  is not connected. Then there exist non-empty subsets   and  of  

such that that  and  and  

 and  

 and  

Since  and  are non-empty, we have. Now consider 

  

            

            

      

Now, we will show that  

Let  and  

. Therefore  

Since  is a closed set in  and since  is continuous,  by corollary 4.3.13,  is a closed set in 

. 

Since  is a closed set containing  and  is the smallest closed set containing  
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we have  

This implies  

Next we will show that  

Let . Then  for some . 

 and .  

So . 

Let  for some .  

 and  

 
So  and hence . 

Next, we will show that . 

If possible suppose that . Then choose and  

 and  and B. 

 and  and  

( )  

, a contradiction. 

So . 

Similarly, we can show that  

Therefore  such that  and  

Thus  is the union of two separated sets; which is a contradiction to the fact that  is 

connected. This contradiction arises due to our supposition  is not connected. Hence 

 is connected. 

5.2.2 Theorem: Let  be a real continuous function on the closed interval . If 

 and if  is a number such that . then there exists a point 

 such that . 

Proof: Given that  is a continuous real function on the closed interval . 

Suppose,  and is a number such that . 

By a known theorem,  is connected. Since  is continuous, by Theorem 5.2.1,   is 

connected subset of . Then by a known theorem,  is an interval. Since 

 and . we have  for some 

. 

5.2.3 Note: Theorem 5.2.2 holds if . 

5.2.4 Definition: If  is defined on , then the set  is called the graph of 

. 

5.2.5 Problem: If  is a real valued function defined on a set  of real numbers and if  is 
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compact, then show that  is continuous on  if and only if the graph of  is compact. 

Solution: Suppose  is a real valued function defined on a set  of real numbers and also 

suppose that  is compact. 

Claim: is continuous on  if and only if the graph of  is compact. 
 

Suppose is continuous on . Then by Theorem 5.1.2.  is compact. Since the product of a 

non-empty family of compact sets is compact. We have  is compact. Since every 

closed subset of a compact set is compact to show the graph of is compact, it is enough if 

we show that the graph of  is a closed subset of . 
 

Write . Then  is the graph of  Let  be a limit point 

of . Then there exist a sequence  of points in  such that 

. This implies  and . Since  is 

continuous and . we have . Since the limit of a sequence is 

unique, we have . 

Therefore . This shows that  contains all of its limit points and hence 

 is a closed subset of . Consequently  is compact. That is, the graph of  is 
compact. 

Conversely suppose that the graph  of  is compact. 

We will show that  is continuous. 

Since  is compact, by a known result,  is closed and bounded, Let . 

Let  be a sequence of points in  such that  converges to , Now 

 is a sequence of points in . Since  is bounded,  is bounded. 

This implies that  is bounded. Then  and   exist. So let 

. Then there exists a sub sequence  of  such that  

converges to . 

Since  is a subsequence of  and  converges to , we have  converges 

to  Then  . Now   is a sequence of points 

in  such that . This implies that  is a limit point of . 

Since  is closed.  and hence . 

Therefore,  

Similarly we can show that  

Therefore, .  

Consequently . So  is continuous at .  

Since  is arbitrary,  is continuous on . Thus  is continuous on  if and only if the 

graph of  is compact. 
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5.2.6 Problem: Let  be the closed unit interval. Suppose  is a continuous 

mapping of  into . Prove that  for at least one . 

Solution: Given that  be the closed unit interval and is a continuous mapping 

of  into . 

Define  as  for all  

Since  is a continuous function, we have  is also a continuous function. 

Consider  and  . 

. 

If . 

If , then . 

Suppose . Then, by known theorem, there exists  such that 

. This implies  and hence . 

Thus, in any case,  for some . 

5.2.7  Problem: Show that a uniformly continuous function of a uniformly 
continuous function is uniformly continuous. 

Solution: Let  be metric spaces. Suppose  and 

 are uniformly continuous functions. 

Claim:  is uniformly continuous. 

Let . Since  is uniformly continuous there exists a  such that 
 whenever ……….(1) 

Since  is uniformly continuous there exists a  such that 
 whenever  

Suppose  such that ………….(2) 

Then from (1) and (2)  

Therefore  is uniformly continuous. 

5.2.8 Problem: If  is a non-empty subset of a metric space  define the distance 

from  to  by  

 

5.2.8.1 Prove that  if and only if  

5.2.8.2 Prove that  is a uniformly continuous function on x, by showing that 

 for all . 

Solution: Suppose  is a non-empty subset of a metric space . 
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Define  for all . 

(a) To show  if and only if  

Suppose   

Now  

If  . Then . 

Suppose . Since , x is a limit point of . Then there exists a sequence  of 

points in  such that  

Let . Since . There exists a positive integer  such that  for 

all . 

Now  for all . 

  

Since  is arbitrary, We have . 

Thus if  it, then  

Conversely suppose that . 

Let . Since  there exists  such that . This implies 

. 

This shows that  for any  and hence . 

Thus  if and only if . 

(b) To shows  is uniformly continuous on . 

Let . Take . Suppose  such that . 

Consider  for all . 

 for all . 

 for all . 

 is a lower bound of . 

 Similarly 

 

Therefore  whenever . 

Hence,  is uniformly continuous on . 
 

Short Answer Questions 

1. When do you say that a mapping  of a metric space  into   is bounded? 

2. Define a homomorphism of a metric space Into another metric space. 
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3. When do you say that a function  of a metric space  into a metric space  is uniformly 
continuous? 

4. Is every uniformly continuous function a continuous function? Justify your 
answer. 

5. Is every continuous function a uniformly continuous function? Justify your 
answer. 

Model Examination Questions 

1. If  is a continuous mapping of a compact metric space  into a metric space  then show 

that  is compact. (Equivalently show that continuous image of a compact metric 
space is compact). 

2. Show that a continuous 1-1 mapping of a compact metric space  onto a metric space 

 is a homomorphism. 

3. Show that a continuous mapping of a compact metric space  into a metric space 

 is uniformly continuous. 

4. Let  be a non-compact set in  .Then show that 

(i) There exists a continuous function on  which is not bounded. 

(ii) There exists a continuous and bounded function on  which has no maximum. 

(iii) If, in addition,  is bounded, then show that there exists a continuous function on  
which is not uniformly continuous. 

5. Show that continuous image of a connected set is connected. 

6. Let be a real continuous function on the closed interval . If  and if 

c is a number. such that  then show that there exists a point 

 such that . 

7. If  is a real valued function defined on a set of real numbers and if  is compact, 

then show that  is continuous on  if and only if the graph of  is compact. 
 

Exercises 

1. Let  be a real uniformly continuous function on the bounded set  in . Prove that  

is bounded on . Show that the conclusion is false if boundedness of  is omitted 
from the hypothesis. 

2. Suppose  is a uniformly continuous mapping of a metric  into a metric space . 

Then prove that  is a Cauchy sequence in  for every Cauchy sequence  

in . 

3. Let  be a dense subset of a metric space  and let  be a, uniformly continuous real function 

defined on . Prove that! has a continuous extension from  to . 

4. Call a mapping  of a metric space  into a metric space  open if  is an open 

set in  whenever  is an open set in Prove that every continuous open mapping of is 
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 monotonic. 

 

Answers to Short Answer Questions 

For 1, see definition 5.1.1. 

For 2, see definition 5.1.9 

For 3,  see definition 5.1.1l 

For 4, see note 5.1.11 

For 5, see note 5.1.11 
 

 

5.3  SUMMARY: 
 

This lesson provides an in-depth examination of continuity, compactness, and 
connectedness, crucial concepts in topology. Learners will engage with definitions, 
theorem proofs, and corollaries to solidify their understanding. Practice problems will 
help learners develop problem-solving skills, enabling them to apply these concepts to 
mathematical and real-world problems. 

 

5.4  TECHNICAL TERMS: 
 
 Arbitrary 
 Argument 
 Bounded 
 Boundedness 
 Closed set 
 Compact metric space 
 Continuous mapping 
 Homomorphism 
 Integer 
 Limit point 
 Lower bound 
 Maximum 
 Minimum 
 Neighbourhood 
 Non-compact set 
 Open set 
 Real number 
 Uniform 
 Upper bound 

 
 
 

5.5   SELF ASSESSMENT QUESTIONS: 
 
1. Define a homomorphism of a metric space Into another metric space. 
2. Is every uniformly continuous function a continuous function? Justify your answer  
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3. Is every continuous function a uniformly continuous function? Justify your answer. 
4. Show that a continuous 1-1 mapping of a compact metric space  onto a metric space  is 

a homomorphism. 
5. Show that continuous image of a connected set is connected. 
6. Suppose  is a uniformly continuous mapping of a metric  into a metric space . Then 

prove that  is a Cauchy sequence in  for every Cauchy sequence  in . 
7. Call a mapping  of a metric space  into a metric space  open if  is an open set in 

 whenever  is an open set in Prove that every continuous open mapping of is  
monotonic. 
 

 

5.6  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International      

     Editions Walter Rudin. 

2.  Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 
 

Prof. B. Satyanarayana 

 

 



LESSON-6 

DISCONTINUITIES OF REAL FUNCTIONS 
 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To determine the discontinuity of real functions at a point, and investigate types and 
properties of discontinuities.  

 To analyze and identify properties of discontinuous functions that develops 
mathematical reasoning and problem solving skills. 

STRUCTUE: 
 
6.0  INTRODUCTION 
6.1 DISCONTINUITIES 
6.2 MONOTONIC FUNCTIONS 
6.3 INFINITE LIMITS AND LIMITS AT INFINITY 
6.4 SOME MORE EXAMPLES WITH SOLUTIONS 
6.5 SUMMARY 
6.6 TECHNICAL TERMS 
6.7 SELF ASSESSMENT QUESTIONS 
6.8 SUGGESTED READINGS 

 

6.0 INTRODUCTION: 

Throughout this lesson  denotes a real valued function of real variable. In this 
lesson the discontinuity of first kind and the discontinuity of second kind are defined. It is 
proved that if f is a monotonically increasing function defined on , then  and 

 exist at every point  of . It is also proved that if  is monotonic on , 
then the set of points at which  is discontinuous is at most countable. 

 

6.1 DISCONTINUITIES: 

6.1.1  Definition: Let  be a function from a metric space  into a metric space . If  is 

not Continuous at a point , then we say that  is discontinuous at  .  

6.1.2  Definition: Let  be a real valued function defined on . Let  be a point 

such that  . A number  is called the right hand limit of  at  

i f  a s   for all sequences  in  such that  and we 

write .  

6.1.3  Definition: Let  be a real valued function defined on . Let  be a point 

such that  . A number  is called the left hand limit of  at  
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i f  a s   for all sequences  in  such that  and we 

write .  

6.1.4  Note: If ,then  exists if and only if 

   

6.1.5  Definition: Let  be a real valued function defined on . If  is 

discontinuous at a point  and if  and exist, then  is said to 

have a discontinuity of the first kind or a simple discontinuity at . In this case either 

 in which case the value of  is immaterial or 

 

6.1.6 Definition: Let  be a real valued function defined on . If  is discontinuous 

at   and if either  or  does not then  is said to have 
discontinuity of second kind. 

 

6.2  MONOTONIC FUNCTIONS: 

6.2.1 Definition: Let  be a real valued function defined on . Then  is said to be 

monotonically increasing on  if  implies that  and  

is, said to be monotonically decreasing on .  if  implies that 

.  is said to be a monotonic function if it is either monotonically 
increasing or monotonically decreasing. 

6.2.2 Theorem: Let  be a monotonically increasing function defined on . Then 

 and  exist at every point  of  More precisely, 

 

Furthermore, if , then  

Proof: Let  be a monotonically increasing function defined on . 

Let  Since  is monotonically increasing, we have  for all  such 

that .  This implies  is bounded above by . Since  has least 

upper bound property,  has a least upper bound, say . Then  

Now we will show that  

Let . Then is not an upper bound of . This implies there 
exists  such that  and 
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Take . Then . Suppose   . Since  is monotonically 
increasing, we have 

 
From(l)  and  (2),we have whenever  .  This  

implies  for all  such that   and hence 

Thus  That is,  

Next, we will show that  

Since  is monotonically increasing, we have  for all  such that 

.  This implies  is bounded below by . Since  has 

greatest lower bound property,  has a greatest lower bound, say . 

Then  

Now we will show that  

Let . Then is not a lower bound of . This implies there 
exists  such that  and 

 

Take . Then . Suppose   . Since  is monotonically 
increasing, we have 

 

From(3)  and  (4),we have  whenever  .  This  

implies  for all  such that  and hence 

Thus  That is,  
       Hence,  

 

Next we will show that  if  

Suppose . Then by the above 

5) 

 

  

Thus if , then  
 

6.2.3  Note: The above theorem also holds for monotonically decreasing functions. 

 
6.2.4  Corollary: Monotonic functions have no discontinuities of the second kind. 
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Proof: Let  be a monotonic function defined on  Then by theorem 6.2.2 [If  
is monotonically increasing) and by note 6.2.3 (if  is monotonically decreasing). 

 and  exist at every point . So  has no discontinuities                    of second 
kind. 

6.2.5 Theorem: Let  be a monotonic on .Then the set of points of  at which  
is discontinuous is atmost countable. 

Proof: Given that f is monotonic on . Suppose  is monotonically increasing. Let 
 be the set of points at which  is discontinuous. If  is empty or finite, then    is 

atmost countable. 

Suppose  is not finite. In this case we will show that  is countable. 

     Let . Then  is discontinuous at . Since  is monotonic, by corollary 6.2.4, 

 has discontinuities of first kind. This implies  exist and 

 .Then choose a rational number  such that 

 Thus if , then there exist a rational number ) such 

that  

Write . Then , the set of rational numbers. Since  is 
countable,  is also countable .. 

Now define  as  for all .  

Then clearly  is a function. 

Suppose  such that . Assume  

Then by theorem 4.1.8, . This implies that 

   

  and hence  

Thus  implies that  

Consequently is one – one.  

Clearly  is onto 
Therefore  is a bijection and hence  is countable(·.·  is countable). 

So  is atmost countable. 

Now if  is a monotonically decreasing function, then  is a monotonically 

increasing function, then the set of discontinuities of  are the same, we have the 

set of discontinuities of  is atmost countable. Thus the set of discontinuities of a 
monotonic function is atmost countable. 
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6.3  INFINITE LIMITS AND LIMITS at INFINITY 

6.3.1 Definition: For any real , the set of real numbers  such that  is called a 

neighborhood of  and is written . For any real , the set of real numbers  

such that  is called a neighborhood of  and is written  

6.3.2 Definition: Let  be a real function defined on . We say that  as  

where  and  are in the extended real number system, if for every neighborhood  

of  there is a neighborhood  of x such that  is non- empty and such that 

 for all  

6.3.3 Theorem:  where A and x are extended real numbers if and 

only if  for all sequences  in  such that  and 

 

Proof: Suppose  

Let  be any sequence in  such that  and  

Let  be any neighborhood of . Since , there exists a neighborhood 

 such that  and  for all  and . Since,  

there exists a positive integer  such that  for all  This implies 

 for all  and hence  

Conversely suppose that  for all sequences  in  such that 
 and  

If possible suppose that  there exists a neighborhood  of  such 

that for every neighborhood  of there exists a point  for which  and 

 

Case (i): Suppose  . Let  be a positive integer. Now  is a neighborhood 

of  . Then their exists  such that  and  Therefore   
is a sequence of points in  such that  ,  and 

 . 

Case(ii): Suppose  . Let  be a positive integer. Now  is a 

neighborhood of  . Then their exists  such that  and 

 Therefore   is a sequence of points in  such that  ,  

and 

 . 

Case (iii): Suppose  is a real number. Let  be any positive integer  
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 is a neighborhood of  Then their exists  such that  

and  Therefore  is a sequence of points in  such that 

 as   and  

Thus in any case there exists a sequence {t} of points in E such that  and 
 which is a contradiction to our supposition. This contradiction 

arises due to our assumption . Hence . 

6.3.4 Problem: Define  and 

 Then show that  is continuous at every point  and  

has a discontinuity of first kind at  

Solution: First we show that  is continuous at every  such that . 

Let  such that   and let . 

Then  or  . 

Suppose . Choose  such that .  

Then  

Suppose  such that   . Then    

This implies . 

consider  

So, in this case,  is continuous at  . 

Suppose . Choose  such that  

Then . 

Suppose  such that  . Then    

This implies  

Consider . 

So, in this case also  is continuous at  . 

Thus  is continuous at every point   such that . Next we will show that 
 is discontinuous at . 

Let    be any sequence in  such that . 

Then  So  

Let    be any sequence in  such that . 

Then  So   

Therefore  and  exist and .  
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So  has a discontinuity of first kind at  

6.3.5 Problem: Define  as  if x is a rational number and  if  

is a irrational numbers. Then show that  has a discontinuity of second kind at every 

point . 

Solution: First we show that  is discontinuous at every point   

Let  and let . 

Let  be any real number such that  

Case (i) : Suppose  is a rational number. 

Choose an irrational number  such that  .  

Then . 

Consider  

Case (ii): Suppose  is an irrational number. 

Choose a rational number  such that  .  

Then . 

Consider  

Thus in any case, for , for any , there exists  such 

that . 

This shows that  is discontinuous at . 

Hence  is discontinuous at every point  

Next, we will show that  has a discontinuity of second kind at every point 
. 

Let   For each positive integer , consider  

Choose a rational number  in  Then  is a sequence of rational numbers such 

that   

 . 

Consider  

So  is a sequence of rational numbers in  such that   and  

 . Let  be a sequence of irrational numbers such that  

Then  be a sequence of irrational numbers in  such that  as  and 
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Thus  and  are two different sequences in  such that  and  but 
 

This shows that  does not exist and  has a discontinuity of second kind at  Hence  

has a discontinuity of second kind at every point. 

6.3.6 Problem: Define  as  if  is irrational and  if  is 

irrational. Then show that  is continuous at  and has a discontinuity of the 

second kind at every other point in  . 

Solution: First we show that  is continuous at  

Let . Take  

Suppose   such that  

Consider  or  according as  is rational 

or  is irrational. This implies that  

Therefore  is continuous at . 

Suppose   such that . 

 For each positive integer   consider  

Choose a rational number  in  Then  is a sequence of rational numbers such 

that   
Consider  

For each positive integer    

Choose an irrational number  in  Then  is a sequence of irrational numbers 

such that   
and  

Thus  and  are two different sequences in  such that  and  but 
 

This shows that  does not exist and  has a discontinuity of second kind at  Hence  

has a discontinuity of second kind at every point . 
 

6.4  SOME MORE EXAMPLES WITH SOLUTIONS: 

6.4.1 Example: Call a mapping from  into  open if  is an open set in  whenever  is 

an open set in  Prove that every continuous open mapping of  into  is monotonic. 
Solution: Suppose  is continuous and not monotonic, say there exist points  

with  and  
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Then the maximum value of  on the closed interval  is assumed at appoint  in the 

open interval  

If there is also a point  in the open interval  where  assumes its minimum value 

on  then  

If no such point  exists, then  where  

In either case, the image of  is not open. 

6.4.2 Example: Let  denote the largest integer contained in  that is  is the integer 

such that  and let  denote the fractional part of  What 

discontinuities do the functions  and (  have? 
Solution: The two functions have the same discontinuities, 

Since each can be written as the difference of the continuous function  and the 

other function. 

Now the function  is constant on each open interval  

Hence its only possible discontinuities are the integers.  

These are of course real discontinuities, since if  there is no  such that 

 whenever  

6.4.3 Example: Let  be a real function defined on  Prove that the set of points at 

which  has a simple discontinuity is at most countable. Hint : Let  be the set on 

which  With each  point  of  associate a triple  of rational 
numbers such that  

(a)  

(b)  implies  

(c)  implies  

The set of such triples is countable. Show that each triple is associated with at most one 
point of  Deal similarly with the other possible types of simple discontinuities. 

Solution: The existence of three such rational numbers  for each simple 

discontinuity of this type follows from the n assumption  and the 

definition of  and  
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We need to show that a given triple  cannot be associated with any other 

discontinuity of this type.  

To that end suppose  and  

If we do not have  then the triple chosen for  will differ from 

 in the first element. 

Hence suppose  

In this case we definitely cannot have  since there are points  such that 

 (if there weren’t, we would have  

       We have thus shown that shown that the set of points  at which 

 is at most countable. 

The proof that the set of points at which  is at most countable is, of 

course, nearly identical. 

         Now consider the set of points  at which  exists, but is not equal to  

   For each point  such that  we take a triple  of          

rational numbers such that  

(a)  

(b)   or  implies  

As before, if  and  the triple associated with  will be 

different  from that associated with  

For even if  we cannot have  since  and 

  

The proof that the set of points  at which  is countable is 

nearly identical. 

Hence, the number of  points in  at which  has a discontinuity of first kind is 

countable. 

Short Answer Questions 

1. When do you say that a real valued function  defined on  has a 
discontinuity of first kind? 
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2. When do you say that areal valued function  defined on  has a 
discontinuity of second kind? 

3. Determine  as  if  is rational and . If x is irrational. 

Then show that  is continuous at . 

Model Examination Questions 

1. Let  be a monotonically increasing function defined on . Then show that  

and  exist at every point  of ). More precisely, 

2. Let  be monotonic on . Then show that 

 the set of points of  at which  
is discontinuous is atmost countable. 

3. Define  as  if  and  if  Then show 

that  is continuous at every point  and  has a discontinuity of first kind at  

4. Define  as  if  is rational and  if  is irrational. Then 

show that  has a discontinuity of second kind at every point    

Exercises 

1. Suppose  and  are metric spaces and  is compact. Let  map  into ; let  be a 

continuous one-to-one mapping of  into , and put  for all  

Prove that  is uniformly continuous if  is uniformly continuous. 

Answers to Short Answer Questions 

1.  For 1, see definition 6.1.5 

2.  For 2, see definition 6.1.6 

3.  For 3, see definition 6.2.1 
 

6.5  SUMMARY:  

This lesson focuses on understanding and analyzing discontinuities of real functions at 
a point. Learners will explore types and properties of discontinuities, developing 
mathematical reasoning and problem-solving skills. The Lesson Highlights Introduction 
to discontinuities of real functions, Definitions and proofs of relevant theorems, Solved 
problems and examples to illustrate key concepts, Analysis of properties of 
discontinuous functions. 
 

6.6  TECHNICAL TERMS: 
 

 

 Atmost countable 
 Bijection 
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 Discontinuity 
 Monotonically decreasing 
 Monotonically increasing 
 Neighborhood 
 Real variable 

 

6.7  SELF ASSESSMENT QUESTIONS: 

1. Let  be monotonic on . Then show that 

 the set of points of  at which  
is discontinuous is atmost countable 

2. When do you say that a real valued function  defined on  has a 
discontinuity of first kind ? 

3. When do you say that a real valued function  defined on  has a 
discontinuity of second kind ? 

4. Let  denote the largest integer contained in  that is  is the integer such that 

 and let  denote the fractional part of  What 

discontinuities do the functions  and (  have ? 

 
6.8  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International       
Editions Walter Rudin. 

2.   Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 
 

Prof. B. Satyanarayana 

 

 

 



LESSON -7 

DERIVATIVE OF REAL FUNCTIONS 
 

 
OBJECTIVES: 
 
The objective of the lesson is to help the learners to understand 
 
 To define and explain derivatives of real functions and apply derivatives to solve 

optimizations skills. 
 To develop problem solving skills using derivatives. 

 

STRUTURE: 
 

7.1 INTRODUCTION 
7.2 THE CHAIN RULE 
7.3 SOME MORE EXAMPLES WITH SOLUTIONS 
7.4 SUMMARY 
7.5 TECHNICAL TERMS 
7.6 SELF ASSESSMENT QUESTIONS 
7.7 SUGGESTED READINGS 

 
7.1 : INTRODUCTION:   
 
1. Derivative at a point: Let  denotes the open interval ]a,b[ in  and let . Then a 
function  is said to be differentiable (or) derivable at  iff 

 
Or equivalently 
  

 
exists and is denoted by  or by . 
 
2. Progressive and regressive derivatives:  
 

Definition : The progressive derivatives of  at  is given by 

 
and is denoted by  or by . 
The regressive derivative of  at  is given by 

 
and is denoted by  or by . 
Progressive and regressive derivatives are also called right hand and left hand differential 
coefficients of  at . 
It is easy to see that  exists iff  and  exists and are equal. 
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3. Differentiability in . A function  is said to be differentiable at  iff 

 exists, differentiable at  iff  exists.  is said to be differentiable in  iff it 
is differentiable at every point of . 
 

4. Derivative of function. Let  denoted the subset of  consisting of all points of  at which 
 is differentiable. Then the function  defined by  for all  is 

called the first derivative of  (or simply the derivative of f ) and is denoted by  or by . 
Similarly 2nd, 3rd, …, nth derivatives of  are defined and denoted by  
respectively. 

Note: The definitions given in 1 and 4 above concern two different but related concepts. 
The derivative of  at a point  is a number while the derivative of  is a function. 
However, very often the term derivative of  is employed to denote both number and 
function and it is left to context to distinguish which is intended. 

7.1.1  Definition: Let  be defined and a real valued function on . For any  
from the quotient. 

 ,  …………….(1)  

and define 

…………………………(2)  

provided this limit exists. 

We thus associate with the function , a function  whose domain is the set of points  at 
which limit (2) exists;  is called derivatives of . 

If  is defined at a point , we say that is differentiable at . If  defined at every point of set 
, we say that  is differentiable on . 

It is possible to consider right hand and left hand limits is (2); this leads to right hand and left 
hand derivatives, we shall not, however, discuss one-sided derivatives in any detail. 
 

7.1.2 : Theorem: Let  be defined on . If  is differentiable at a point ,  
then  is continuous at . 

Proof: Suppose that ‘ ’ is differentiable at a . 

point we show that  is continuous at . 

Let . 

Now  

Taking limit  on both  sides 
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  is continuous at . 
 

7.1.3 Remark: The converse of the above theorem is not true is a continuous function need 
not be differentiable. 

Justification: Define  by   

Now we prove that  is continuous at and  is not differentiable at  

Now for any  

 

R. H. L =  

 where  

  

L. H. L =  

 where  

  

So R. H. L= L. H. L 

Hence   exists and is   

Also,   

Thus  

This shows that  is continuous at  

Differentiability: 

We have  

Now R. H. D  

  

  

  where  

  

  

  

Now L. H. D  
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  where  

  

  

  

So R. H. D  L. H. D 

 does not exist 

That is  does not exist 

This shows that  is not differentiable at  
 

7.1.4 Example: 

Take the function . 

clearly  is continuous at . 

For , , 

But  as  and  as  

 does not exists. 

Hence  is not differential at . 
 

7.1.5 Theorem: Suppose that and  are defined on  and are differential at a point 

. Then ,  and  are differentiable at , and 

(a)  

(b)  

(c)  

In (c) we assume that . 

Proof: Suppose that  and  are differentiable at a point  

(a) let  

we show that  is differentiable at  and  take some 
. Then 
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  is differentiable at  and . So,  

(b) let  

Consider . Then 

 
 

 
 

 
 

 
 

 
 

          

  is differentiable at  and . 

So, . 

(c) let  

Take some . Then 
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  is differentiable  . 

7.1.6  Example: The derivative of any constant is zero. If  is defined by , 
then . Repeated application of (b) &(c) this shows that  is differentiable and its 
derivative is  for any integer . Thus every polynomial is differentiable and so every 
rational function is also differentiable. 
 

7.2 : THE CHAIN RULE: 
 

7.2.1  Theorem (Chain rule): 

Suppose  is continuous on ,  exists at same point ,  is defined on an 
interval , which . 

Proof: Let , where  

Suppose that  exists at same point  and  is differentiable at  

show that h is differentiable at  and  

Let  

Define the function  and  by 

 and 

  

Then  
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and  

 

Let  

Consider  

      

     (from (2))  

      

                                             (from (1)) 

  

  

                         . 

So,  is differentiable at  and  

 . 

 

7.2.2 Examples: 

(a) Let  be defined by  

  

Clearly for,  is differentiable at all points  and  but f is 

not differentiable at . 

for , consider  

Their limit does not exists 

 f is not differentiable at . 

(b) Let f be defined by  

clearly f is differentiable at all points  and  

Here  is not differentiable at all points . 
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for , consider  

 is differentiable at  & . 

But the deliverable  is not continuous since  

For  

  

  

 is differentiable at   , but the differentiable   

(c) Let  + and . The function  is continuous at each , but 
 does not exists, since  and , for , . 

 

 

7.3 SOME MORE EXAMPLES WITH SOLUTIONS: 

 

7.3.1 Example: Let  be defined for all real , and suppose that 

 

for all real  and . Prove that  is constant. 

Solution: Dividing by , and letting , we find that  for all . 

Hence  is constant. 

7.3.2 Example: Suppose  in . Prove that  is strictly increasing in 
, and let  be its inverse function. Prove that  is differentiable, and that 

 
Solution: For any  with  there exists a point  such that 

 
Hence . 
We know that the inverse function  is continuous. (Its restriction to each closed 
subinterval  is a continuous, and that is sufficient.) 
Now observe that if  and , we have 
 

 
Since we know that 

 
provided , it follows that for any  there exists  such that 
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if . Since , there exists  such that  
if . 

The proof is now complete. 

7.3.3 Example: If 

 
 
where  are real constants, prove that the equation 

 

Has at least one real root between 0 and 1. 

Solution: Consider that polynomial 

 
It is obvious that , and the hypothesis of the problem is that . 

Hence Rolle’s theorem implies that  for some  between 0 and 1. 

7.3.4 Example: Suppose  is defined and differentiable for every , and  as 
. Put . Prove that  as . 

Solution: Let . Choose  such that  if . 
Then for any  there exists  such that 
 

 

Since , it follows that , as required. 

7.3.5 Example: Suppose  and  exists, , and . Prove 
that 

 

(This holds also for complex functions.) 

Solution: Since , we have 
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7.3.6 Example: Suppose  is continuous on  and . Prove that there exists  

such that 
  

 

whenever , , . (This could be expressed by 
saying that  is uniformly differentiable on  if  is continuous on .) Dose 
this hold for vector-valued functions too? 

Solution: let  be such that  for all  with . 
Then if  there exists  between  and  such that 

 
and hence, since , 

 
 

Since this results holds for each component of a vector-valued function , it must 
holds also for . 

7.3.7 Example: Give an example a continuous function which is not differentiable. 

Solution: Let  be defined by  

  

Now we prove that  is continuous at  but not differentiable at  

R. H. L  

 where  

  

 (a finite quantity between ) 

  

L. H. L  

 where  

  

 (a finite quantity between ) 

  

So R. H. L= L. H. L =  
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Also  

  

This shows that  is continuous at  

Differentiability:  

L. H. D =  

  

  

  where  

  

 Which does not exist. 

R. H. D =  

  

  

  

Which does not exist. 
Since Neither the left hand derivative nor the right hand derivative exists at  

 has no derivative at  

Hence  is not differentiable at  

    Exercise : 

1. Define derivative of a function on . 

2. Show that sum of two differentiable functions is differentiable.  

3. Give an example a continuous function which is not differentiable. 

4. State and prove chain rule. 
 

7.4 SUMMARY:  
 

This comprehensive lesson introduces learners to the concept of derivatives of real 
functions, providing a solid foundation for optimization techniques. Through a 
combination of theoretical explanations, named theorems, and practical examples, 
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learners will develop problem-solving skills using derivatives to optimize functions. This 
lessons covers 1. Introduction to derivatives of real functions, Named theorems, such as 
The Chain Rule Theorem, Examples with solutions to illustrate key concepts, and 
Exercise problems to reinforce understanding and develop problem-solving skills. 

 

7.5     TECHNICAL TERMS: 
 

 Differentiable function 
 Right hand limit 
 Left hand limit 
 Continuous 
 Inverse function 
 Strictly increasing 
 Chain Rule 

 

7.6   SELF ASSESSMENT QUESTIONS: 
 

1. If where  are real constants, prove that 

the equation  has at least one real root 
between 0 and 1. 

2. Let  be defined on . If  is differentiable at a point ,  then  is 
continuous at . Is the converse true? Justify Your Answer. 

3. State and Prove Chain Rule. 
 

7.7  SUGGESTED READINGS: 
 
1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 

Editions Walter Rudin. 
 
2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 

1985. 
 

Dr. V. Amarendra Babu. 



LESSON-8 

MEAN VALUE THEOREMS AND 

THE CONTINUITY OF DERIVATIVES 
 
OBJECTIVES: 
 
The objective of the lesson is to help the learners to understand 
 
 To understand and apply mean value theorems for real functions. 
 To analyze continuity and differentiability of functions using mean value theorems. 

 

STRUCTURE: 
 

8.0 INTRODUCTION 
8.1 MEAN VALUE THEOREMS  
8.2 SOME MORE EXAMPES WITH SOLUTIONS 
8.3 SUMMARY  
8.4 TECHNICAL TERMS  
8.5 SELF ASSESSMENT QUESTIONS 
8.6 SUGGESTED READINGS 

 

8.0  INTRODUCTION: 

In this lesson we derived local maximum and local minimum and proved generalized 
mean vale theorem ( Cauchy value theorem), Lagrange language mean value theorem and 
Darboux theorem. 

 

8.1 MEAN VALUE THEOREMS: 
 

8.1.1 Definition: Let  be a real valued function defined on a metric space . we say that  
has a local maximum at a point  if there exists  such that 

, for all  with . We say that  has a local minimum at 
a point , if there exists  such that  for all  with 

. 
 

8.1.2 Theorem: Let be defined on ; if  has a local maximum at a point   and 
 exists. 

Then   and 

,  with ………….(1) 

let  

Then  

so,  and . 
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So, , since . 

 

 ………………….(2) 

let  

Then  

So from (1),  

So, , since  

 

 ………………….(3) 

From (2) & (3),  . 
 

Note: A similar result holds for local minimum. 

8.1.3 Theorem: Let  and  are continuous real functions on  which are 
differentiable is , then there is a point  at which  

 

Proof: Suppose that and  are real continuous functions on  and differentiable in 
. 

Put  , ………(1) 

Then h is continuous on , h is differentiable in , since   are continuous on 
 and , g are differentiable on . 

Also   

  

and  

  

Now, we show that  for some  

Case I: Suppose that  is a constant function then, 

clearly    

Case lI: Suppose that  is not a constant function. 

Then   

Then either  or suppose that  

 By the well known theorem,  attains its maximum at some point  

 ,  
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Then h has local maximum at the point  

 By the Theorem 8.1.2 ,  

If , the same argument is the above,  a point  From 
(1) 

  

  
 

8.1.4 : Theorem ( Lagrange Mean value theorem ) : 

If  is a real continuous function on , which is differential in , then there is a 
point  such that  

Proof: Let  be a continuous real function on  and differentiable in . 

Put  

Then  is continuous on  & differentiable on  and . 

Then by Theorem 8.1.3, there exists a point  such that 
 

so, . 
 

8.1.5 :Theorem: Suppose that  is differentiable in  

(a) If  for all , then  is monotonically increasing 

(b) If  for all , then  is constant. 

(c) If  for all , then  is monotonically decreasing: 

Proof: Suppose that  is differentiable is  

(a) Suppose that , for all  

Let  such that  

clearly  is continuous on  and differential in  so, by 
mean value theorem,  such that 

  

……………………..(1) 

  

 for  

Hence  is monotonically increasing. 

(b) Suppose that  , for all . 

So, from (1),  

  

,   
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  is constant. 

(c) Suppose that ,  suppose that  

From (1),  

  

  

S o ,   

Hence  is monotonically decreasing. 

Note: We have already known that a function  may have a derivative  which exists at 
every point, but is discontinuous at some point. How function has derivative. 

In particular, derivatives which does not exist at every point of an interval has one 
important property is common with functions which are continuous on an interval. The 
precise statement follows. 

 

8.1.6 Theorem: Suppose   is real differentiable function on  and suppose 
. Then there is a point  such that . 

A similar result holds if . 

Proof: Suppose that  is a real differentiable function on 
 suppose  .  

Define a function  by ,   

clearly  is differentiable on . Since  is differentiable. 

Here  

Now  and  

since ,  is decreasing at ‘ ’ 

so, there exists,  

  has local maximum at some point . 

since ,  is increasing at ‘ ’ 

Then there exists some  

  

  

so,  

  since  has local maximum at  

 so, . 

Therefore  

8.1.7 : Corollary: If  is differentiable function in , then  cannot have any simple 
discontinuous on . 
 

8.1.8 : Examples: 
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(1)  If  for , , show that  is continuous and differentiable 

everywhere and that . Further that  has a discontinuity of second kind of the 
origin. 

Solution: Since  

  

  

Similarly  

  

  is continuous at . 

Again consider  

                                

  is differentiable at  

At all other points, it is easy to prove f is continuous and differentiable. 

Now  at  and  

Therefore  

which does not exist. Similarly  does not exist 

Hence has a discontinuity of second kind at the origin. 
 

(2)  Prove that the function  is continuous at , but not differentiable at . 

Sol: Since ,  

                                                             

and  

                           

Hence,  is continuous at  

since   

and  

Therefore  

Hence  is not differentiable at  
 

8.2 SOME MORE EXAMPES WITH SOLUTIONS: 
 

8.2.1 Example: If in the Cauchy’s mean value theorem, we write 

    and , 
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Show that ‘ ’ is the arithmetic mean between  and . 
Solution: Hence, 

 
 

 
 

 
and 

 
Therefore, 

 
 

 
 
Substituting these values in Cauchy’s mean value theorem, we get 

 
or, 

 
i.e., . 

Hence ‘ ’ is the arithmetic mean between  and . 
8.2.2 Example: Verify Cauchy’s mean value theorem for the functions  and  in the 

interval . 
Solution: Let , . Then 
 

 
 

 
and  

 
 

 
Since, 

 
 

 
Therefore, 

 
or, 
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Since this value of ‘ ’ lies in interval  , Cauchy’s mean value theorem is verified. 

8.2.3 Example: If, in the Cauchy’s mean value theorem, we write 
 

    and , 

then, , is the geometric mean between  and  and if we write 
 

    and , 

then, , is the harmonic mean between  and . 

Solution: When  and , we have 
 

 
 

 
Thus 

 
That is,  is the geometric mean between  and . 

And when , , we have 
 

 
 

 
Thus 

 
That is,  is the harmonic mean between  and . 

8.2.4 Example: Use Cauchy’s mean value theorem to evaluate 

 
Solution: Let  , , . 

Putting these values in Cauchy’s mean value theorem, 

 
We get 
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Taking limits as  which implies that , we get 

 
 

 
or 

 
as  as  

or 

 
 

8.2.5 Example: Use Lagrange’s mean value theorem to prove that 

 
Solution: Consider the function 

 
Then  is continuous in  and differentiable in  . 
Consequently by Lagrange’s mean value theorem there exists  such that 

 
or 

 
Now,  
From (1) and (2), 

 
or 

 
or 

 
or 

 
Which proves the required result. 
 

8.2.6 Example . Assuming the derivatives which occur are continuous, apply the mean 
value theorem to prove that 
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Solution: Let  so that  
Now, 

 
 

 
 

 
 

[since , by the mean value theorem] 
 

 
 

 
 

[since , by the mean value theorem] 
 

 
 

 
 

 
 

Note: This example provides an alternative proof of the Chain Rule(Lesson-7, Chain Rule 
Theorem). 
 
8.3  SUMMARY:  

This lesson provides a comprehensive exploration of Mean Value Theorems, 
empowering learners to analyze and understand real functions. Through a combination of 
theoretical foundations, proof-based explanations, and illustrative examples, learners will 
develop expertise in applying Mean Value Theorems to investigate continuity and 
differentiability. 

8.4  TECHNICAL TERMS: 
 
 Metric Space 
 Local Maximum 
 Local Minimum 
 Continuous function 
 Differentiable function 
 Constant function 
 Monotonically Increasing 
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 Monotonically Decreasing 
 Discontinuous 
 Discontinuity of Second kind 
 Arithmetic mean 
 Geometric mean 
 Harmonic mean 
 Origin 

8.5  SELF ASSESSMENT QUESTIONS 

1. Let  and  are continuous real functions on  which are differentiable is 
, then there is a point  at which 

 

2. Suppose that  is differentiable in  

(a) If  for all , then  is monotonically increasing 

(b) If  for all , then  is constant. 

(c) If  for all , then  is monotonically decreasing. 

3. If  for , , show that  is continuous and 

differentiable everywhere and that . Further that  has a discontinuity of 
second kind of the origin. 

4. Assuming the derivatives which occur are continuous, apply the mean value 
theorem to prove that  

 
8.6  SUGGESTED READINGS: 
 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

 
2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 

1985. 

 
Dr. V. Amarendra Babu. 

 



LESSON-9  

L’HOSPITAL’S RULE   AND  DERIVATIVES  OF 
HIGHER ORDER, TAYLOR’S THEOREM 

 
 

OBJECTIVES: 
 
The objective of the lesson is to help the learners to understand 
 
 To study another equally important concept namely differentiation that is essential in 

the study of velocity and acceleration of continues paths. 
 To analyze L-hospital’s rule and derivatives of higher order, Taylor’s Theorem. 

 
 

STRECTURE:  
 

9.1  INTRODUCTION 
9.2  DERIVATIVES OF HIGHER ORDER TAYLOR’S THEOREM 
9.3  SOME MORE EXAMPLES WITH SOLUTIONS 
9.4  SUMMARY 
9.5  TECHNICAL TERMS 
9.6  SELF ASSESSMENT QUESTIONS 
9.7  SUGGESTED READINGS 

 
 

 

9.1 INTRODUCTION : 
 

In this lesson, we introduce higher order derivative and proved two theorems L-
Hospital’s rule and Taylor’s theorems. 

 

L’HOSPITAL’S RULE USES: 
Using L Hospital’s rule, we can solve the problem in , , , , , , or 

 forms. These forms are known as indeterminate forms. To remove the indeterminate forms 
in the problem, we can use L’Hospital’s rule. 

 

9.1.1. L-Hospital rule theorem : Suppose that  and  are real and differentiable in 
 , for all  where  suppose 

(1)   as  

 if 

(2)   and  as  

 or if 

(3)   as  

 then  

(4)   as  
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Proof: To prove this theorem in two cases 

(1)   and  

Case I: Suppose  

Choose a real number  such that  then choose  such that . 

since  as , there is a point  such that 

 if …………………………(5)  

Then by, known theorem, there is a point , such that 

  

So, ………………………..(6)  

Suppose (2) holds, Then by (6) 

  

  if ………………….(7)  

then there exists a point  such that   and , if  

Now multiplying (6) by   on both sides 

 
 

 
 

 
 

 
 

 
 

Since  as , taking limits on both sides exists a point  such 
that 
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Case II: Suppose  

choose p such that  

By same argument in case I there is a point  

 

 
 

9.2 DERIVATIVES OF  HIGHER ORDER TAYLOR’S THEOREM : 
 

9.2.1. Definition: If  has a derivatives on an interval and if  is itself differentiable we 
denote the derivative on by  and call the second derivatives of , continuing in this 
manner, we obtain functions  each of which is derivative of the 
proceeding  is called the   (or)  derivative of order n, of . 

In order for  to exists at a point ,   must be differentiable at . Since  
must exist is a neighborhood of .  must be distinct point of  and define. 
 

9.2.2. Theorem (Taylor’s Theorem): 

Suppose  is a real function on ,  is a positive integer,   is continuous on  ,  
 exists for away .  Let  be distinct points of  and define  

 

Then there exists a point  between  and such that 

 

Proof: If  , the Taylor’s reduces to mean value theorem suppose that  

Let  be a number defined by 

 

and put  

 

Now, we show that 

(i) , for  and 

(ii)   
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From (1), 

 

So,  

Now,  

  

  

Now  

 , for  

Also,  from (4) 

So,  

 and  

  

similarly, we prove that  

Now,  

  (degree of , so )………(5) 

Now from (4),  

from (3) we know  is continuous on  and differentiable in . 

Then by mean value theorem, there exists some  such that 

  

  

  

Also  is continuous on  and differentiable  in , again by mean value theorem 
there is some  such that 

  

  

We continue this process, there exists a point  such that  

By from (5),  

  

  

Put  
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Then  

Substituting in (3) we see 

. 

9.2.3.  Theorem : (Taylor’s theorem with Cauchy’s form of remainder) 

If  is a real valued function on  such that all the derivatives upto  are 
continuous in  and  exists in , then 

 

 

where . 

Proof: Consider the function  defined by 

 

 

where  is a constant so chosen that , 

i.e.,  

 

It is easy to see that  is differentiable in  . Hence  satisfies all the conditions of 
Rolle’s theorem. 

Therefore,    . 

But 

 

Since other terms cancel in pairs. 

Therefore,  

or 

 

Substituting this value of  in (1), we get 
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The  term 

 

is called Cauchy’s form of remainder after  times in the Taylor’s expansion of  in 
ascending integral powers of . 

9.2.4.  Corollary: (Maclaurin’s theorem with Cauchy’s form of remainder) 

If we change  to 0 and  to  in , we get 

 

 

The  term 

 

is known as Cauchy’s form of Remainder in Maclaurin’s development of  in the interval 
. 

 

9.3. SOME MORE EXAMPLES WITH SOLUTIONS: 
 

9.3.1.  Example: Let  be a continuous real function on , of which it is known that 
 exists for all  and that  as . Dose it follow that  

exists? 

Solution: Yes, 
By L’Hospital’s rule 
 

 
and this by definition means that  
 

9.3.2. Example : Evaluate  

Solution: Given, 

 
Differentiate the above form, we get 
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Now substitute the limit, 

 

 
Therefore,  

 
 

9.3.3.  Example: Evaluate  

Solution: Given, 

 
 

 
Now substitute the limit, 

 
 

 
Therefore, 

 
 

9.3.4. Example: Prove that 

 

Solution: Here . 

Therefore,  
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and 

 

So that 

 

Therefore, 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting these values in  
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We get, 

 

or 

 

Hence the solution of this example. 

 

9.3.5. Example: Show that ‘  ’ (which occurs in the Lagrange’s mean value theorem) 
approaches the limit    as  ‘  ’ approaches zero provided that  is not zero. It is 

assumed that  is continuous. 
Solution: Since  is continuous at , it follows that  exists. 
Hence by Taylor’s theorem, we get 

 
Also by mean value theorem, we have 
 

 
Substituting (2) from (1), we get 

 
or 

 
Again since  is continuous and differentiable, we have by mean value theorem, 
 

 
 

 
From (3) and (4), we get 

 
or 

 
Hence,  
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provided . 
 

9.3.6. Example: If  find the value of ‘  ’ as  tends to 

1,  being  . 

Solution:  

We have 

 
Hence substituting these values in (1), we get 

 
Therefore, as , we get 

 
or 

 
or 

 
This gives  

9.3.7. Example : If  find that value of ‘  ’ as 

 tends to ,  being  . 

Solution:  

We have 

 

 
Substituting these values in (1), we get 
 

  

 
Hence as , we get from (2), 

 
or 
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9.4  SUMMARY:  

This lesson explores the fundamental concept of differentiation, crucial for 
understanding velocity and acceleration in continuous paths. Learners will delve into 
advanced calculus topics, including L'Hospital's Rule, higher-order derivatives, and 
Taylor's Theorem. This lesson covers - Introduction to differentiation and its 
applications, L'Hospital's Rule for indeterminate forms,  Derivatives of higher order, 
Taylor's Theorem and its applications, Taylor's Theorem with Cauchy's form of 
remainder, Maclaurin's Theorem with Cauchy's form of remainder, and  Practice 
examples with solutions to reinforce understanding. 

 

9.5  TECHNICAL TERMS: 

 Neighborhood 

 Real Valued function 

 Continuous 

 Differentiable  

 Higher order derivative 

 Remainder 
 

9.6  SELF ASSESSMENT QUESTIONS 

1. State and Prove L’ Hospital’s Rule 
2. State and Prove Taylor’s Theorem. 
3. Prove that  

 
4. If  find the value of ‘  ’ as  tends to 1,  

being . 
 

9.7  SUGGESTED READINGS: 
 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

 
2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 

1985. 
 

Dr. V. Amarendra Babu. 
 



        LESSON -10 
 

DIFFERENTIATION OF VECTOR 
VALUED FUNCTIONS 

 
OBJECTIVES: 
 

The objective of the lesson is to help the learners to understand 
 
 To understand the concept of definitions and computation of derivatives of vector 

valued functions and their properties. 
 To apply differentiations for solving problems in Physics, Engineering and 

Mathematics. 

STRUCTURE: 
 

10.0 DIFFERENTIATION OF VECTOR VALUED FUNCTIONS 

10.1 PROPERTIES OF VECTOR VALUED FUNCTIONS 

10.2   SOME MORE EXAMPLES WITH SOLUTIONS 
10.3   SUMMARY 

10.4   TECHNICAL TERMS 
10.5   SELF ASSESSMENT QUESTIONS 

10.6   SUGGESTED READINGS  
 

10.0  DIFFERENTIATION OF VECTOR VALUED FUNCTIONS 
 

10.0.1  Definition: Let complex valued functions defined on , and If  and  are the              
real and imaginary parts of , that is 

, for , where  and  are real then we clearly 
have 

………………………..(1) 

Also,  is differentiable at  if and only if both  and  are differentiable at . Passing 
to vector valued functions in general, i.e., to functions  which map  into some ,  
we may still apply definition 10.1 to define : for each  a point in , and the limit 
is taken with respect to the norm of .  In other words,  is that point of ,  for 
which 

 

 is again a function with values in  

if , then  and  is differentiable at a point  if and 
only if each of the functions  is differentiable at . 

When we turn to the mean value theorem, however and to be of  its consequences, namely 
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L-Hospital’s rule, the situation changes given two examples will show that L-Hospital 
rule & mean value theorem fails for complex valued functions. 

 

10.0.2  Example : 

Define, for real  , ………………..(3) 

Then ……………………………….(4) 

But …………………………………(5) 

So, that , for all real . 

So, the mean value theorem fails to hold this case. 

(OR) 

Let . 

Consider the interval . 

Then the function  is continuous and differentiable for all  so that the conditions 
of the mean value theorem are satisfied in the interval. But 

 

whereas  so that  for all . 

Hence the mean value theorem does not hold in this case. 

 

10.0.3 Example : Define  and  

for ………………….(6) 

 
 

 

 
Now, 

 

and 
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So L-Hospitals rule fails in this case 

Note: By mean value theorem, it follows that 

 

We shall now prove the vector-valued analogue of  

 

In the below theorem. 

10.0.4 Theorem :  Suppose that  is a continuous mapping of  into  and  is 
differentiable in . Then there exists  such that 

. 

  Proof: Given that ‘ ’ is a continuous mapping from  in  and  is differentiable in 
. 

Let  and 

define ,  

Then  is real valued continuous function on   which is differentiable in , since 
 is continuous on  differentiable in  

Then, by mean value theorem, there exists  such that  

  

                        ……………….(1) 

But   

  

…………………………….(2) 

 ………………………………….(3) 

If  , then  
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 ……………………………..(4) 

Suppose that , then from (3) 

  

So,  

  

  

 
10.1   PROPERTIES OF VECTOR VALUED FUNCTIONS: 
 

All of the properties of differentiation still hold for vector values functions. Moreover 
because there are a variety of ways of defining multiplication, there is an abundance of 
product rules. 

Suppose that  and  are vector valued functions,  is a scalar function, and  is a 
real number then 

10.1.1 Property:  , 

10.1.2 Property: , 

10.1.3 Property: , 

10.1.4 Property: , 

10.1.5 Property: , 

10.1.6 Property: . 

 

10.2 SOME MORE EXAMPLES WITH SOLUTION: 

10.2.1 Example: Show that if  is a differentiable vector valued function with constant 
magnitude, then 

 

Solution: Since  has constant magnitude, call its magnitude , 

 

Taking derivatives of the left and right sides gives 

 

 

 

Divide by two and the result follows. 

10.2.2 Theorem. Let  and let  be differentiable at . If 
 for  and ,  as  
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then 

 

Proof: Let   so that . 

Then for each , we have 

 
 

 

Since  is differentiable at  the two expression within the brackets on the right hand 
side of (1) tend to 0 as  and since 

 and  are bounded sequences, it follows that the right hand side of (1) tends 
to 0 as . 

Consequently, the left hand side of (1) also tends to 0 as , that is 

 
10.2.3 Example .  Suppose  is continuous on  and  Prove that there exists 

 such that 

 
 

Whenever    
(This could be expressed by saying that  is uniformly differentiable on  if  is 
continuous on  
Does this hold for vector-valued functions too? 

Solution.  Let  be such that  for all  with  
Then if  there exists  between  and  such that 
 

 
and hence, since  

 
 

 
Since this result holds for each component of a vector-valued function  it must 
hold also for  

10.2.4 Example . Let  be a continuous real function on , of which it is known that  
exists for all  and that  as  Does it follow that  exists? 

Solution. Yes. By L’Hospital’s rule 
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And this by definition means that  

10.2.5 Example . Suppose  is defined in a neighbourhood of  and suppose  exists. 
Show that  

 
 

Solution.  For a real-valued function this is a routine application of L’ Hospital’s rule: 
 

 
 

 
 

 
 

 
For complex-valued functions the result follows from separate consideration of real and 
imaginary parts. 
       The limit will be zero at  for any odd function  whatsoever, even if the 
function is not continuous. 
For example we could take  which is  for  and  for  

10.2.6 Example . Suppose   is a twice-differentiable real function on  and 
,  are the least upper bounds of ,  respectively, on 

 Prove that  
Hint: If  Taylor’s theorem shows that 

 
for some  Hence 

 
To show that  can actually happen, take  define 

 
and show that . 
     Does  hold for vector-valued functions too? 

Solution. The inequality is obvious if  or  
So we shall assume that  and  are both finite. 
We need to show that 

 
for all  We note that this is obvious if . 
Since in that case  is constant, 

 is a linear function, and the only bounded linear function is a constant, whose 
derivative is zero. 
Hence we shall assume from now on that  and . 
    Following the hint, 
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We need only choose , and we obtain 

 
Which is precisely the desired inequality. 
    The case of equality follows, since the example proposed satisfies 
 

 
 

We see easily that  for all  
Now, 

 
and 

 
It thus follows from above  and that  is continuous. 
Likewise  for  and also that 

 
Hence again implies that  is continuous and  
      On dimensional space let  

 
 

and 

 
Just as in the numerical case, 
there is nothing to prove if  or  or . 
And so we assume  and . 
Let  be any positive number less than  
Let  be such that  
and let 

 
 

Consider the real-valued function  
Let   and  be the supremum of ,  and  respectively.  
By the Schwarz inequality we have 

 
While, 

 
We therefore have 

 
Since  was any positive number less than , we have 

 
i.e.,  the result holds for vector-valued functions. 
    Equality can hold on any  as we see by taking 

 
or 
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where  is a real-valued function for which equality holds. 

10.2.7 Example . Suppose  is twice-differentiable on ,  is bounded on , and 
 as  . Prove that  as  . 

Solution: We shall prove an even stronger statement. 

If  as  and  is uniformly continuous on , 

then  as  . 

For, if not, let  be a sequence such that  for all . 

(We can assume that  is a positive by replacing  with  if necessary.) 

Let  be such that 

 

 

We then have 

 

if , and so 

 

 

But, since , there exists  such that 

 

for all . 

Hence, for all large  we have 

 

 

 

and we have reached a contradiction. 

The problem follows from this result, since if  is bounded, 

say , then , and 

 is certainly uniformly continuous. 

10.2.8 Example .  Formulate and prove an inequality which follows from Taylor’s theorem 
and which remains valid for vector- valued functions. 

Solution. There is a variety of possibilities, of which we choose just one: 
Suppose  ahs continuous derivatives up to order  on  
Then there exists  such that 
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To prove this assertion true for a vector-valued function  we merely observe that it 
holds for each scalar-valued function  if  is any fixed vector of length  
It is obviously true if  and in all other cases it follows by taking  

 
 

10.3  SUMMARY:  

This lesson introduces the concept of differentiation of vector valued functions, 
exploring their definitions, theorems, and properties. Learners will understand how to 
compute derivatives of these functions and apply differentiation to solve problems in 
Physics, Engineering, and Mathematics. This Lesson highlights Differentiation of 
vector valued functions, definitions and theorems, Properties of vector valued 
functions, Examples and practice problems with solutions. 

 

10.4  TECHNICAL TERMS: 

 Complex function 
 Real Part 
 Imaginary Part 
 Differentiable function 
 Continuous function 
 Vector Valued function 
 Scalar function 
 Magnitude 
 Least Upper Bounds 
 Bounded 
 Linear Function 
 Bounded Linear Function 
 n-dimensional space 

 

10.5  SELF ASSESSMENT QUESTIONS: 

1.   Suppose that  is a continuous mapping of  into  and  is differentiable in    
. Then there exists  such that . 

2. Suppose   is a twice-differentiable real function on  and ,  are 
the least upper bounds of ,  respectively, on  Prove that 

 
3.     Suppose  is twice-differentiable on ,  is bounded on , and  as 

 . Prove that  as . 
4.    Suppose  is defined in a neighbourhood of  and suppose  exists. Show that  
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. 

 
10.6  SUGGESTED READINGS: 
 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

 

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 
1985. 

 

Dr. V. Amarendra Babu. 

 



LESSON-11 
 

THE RIEMANN-STIELTJES INTEGRAL 
THE DEFINITION AND EXISTENCE OF THE 

INTEGRAL 
 
OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the Definition and properties of Riemann-stieltjes integral. 
 To compute the Riemann-stieltjes integral for various functions. 

 

 

STRUCTURE: 
 
 

11.0  INTRODUCTION 
11.1  THE DEFINITION AND EXTSTENCE OF THE INTEGRAL  
11.2   SUMMARY  
11.3   TECHNICAL TERMS  
11.4   SELF ASSESSMENT QUESTIONS  
11.5   SUGGESTED READINGS 
 

 

11.0  INTRODUCTION: 
 
In this lesson, the Riemann integral of a bounded real valued function is defined. A 
necessary and sufficient condition that a function to be Riemann integrable is proved. It 
is also proved that every continuous function defined on a closed interval  is 
integrable over . Further it is proved that if f is monotonic on and if  is 
monotonically increasing and continues on   then . 
 

11.1  THE DEFINITION AND EXTSTENCE OF THE INTEGRAL: 
 

11.1.1  Definition: Let  be an interval. By a partition . of  we mean a finite set 
 of points such that 

. 
Put   . Clearly,  is the length of the sub  interval 

. 
11.1.2  Definition: Let  be a bounded real valued function defined on  

Corresponding to each partition  of , 
We put  and  

 for  

  

Put  and  

  

where the lnf and the Sup are taken over all partitions  of  

 is  called the upper Riemann integral of  and 
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 is  called the lower Riemann integral of  over  

If then we say that f is Riemann integrable over  And we 

denote the set of all Riemann integrable functions by  and we denote the common 

value of (1) and (2) by  or . 
11.1.3  Theorem: The upper and lower Riemann integrals always exist for every bounded 

function. 
Proof: Let  be a bounded real valued function defined on . Then there 

exist two numbers  and  such that   for all  

Let  be  any partition of  

Put  and  

 for  

Then  for . 

This implies  

and hence  
 
This shows that  and  
 

 are bounded sets.  
 
Therefore  and  
 

 exist. That is  exist. 

 
Thus the lower and upper Riemann integrals of a bounded function always exist. 
 

11.1.4  Definition: Let  be a bounded real valued function defined on  and 
 

let  be a monotonically increasing function on  (Then  is bounded on 
 

 For each partition   of  and we write 
 

 Since  is monotonically increasing on ,  
 
for   

Define  and  

  for  

 
 and  

 
The sums  and  are respectively called the upper and lower 
 



Analysis – I 11.3                           The Riemann-Stieltjes…  
 

Riemann Stieltjes sums of  with respect to  corresponding to the partition . 
 

 and 

 

  

 

 is  called the upper Riemann-Stieltjes integral of  with respect to  over  

 
 and  is  called the Lower Riemann-Stieltjes integral of  with respect  

 
to  over . 
 

If  we denote the common value by  or by  

 
is called Riemann - Stieltjes integral of  with respect to  over . 
 

If   exists,  that is  we say that f is integrable with respect  

 
to  in the Riemann sense. We denote the set of all Riemenn Stieltjes integrable 
 
functions with respect to  note that, by taking  for all ,the 
 
Riemann integral is seen to be a special case of the Riemann Stieltjes integral. 
 

11.1.5  Definition: Let  be a partition of . A partition  of .  is called a 
 

refinement of  if  contains  (i.e., if every point of  is a point of ). 
 
Given two partitions  and  of . We say that is their common refinement 
 
if  

 
11.1.6  Theorem: If  is a refinement of , then  and  
 

. 

 
Proof: Let  be  a partition of  and  is a refinement  

 
of  
 
First suppose that contains just one point more than  
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Let this extra point be  and suppose  for some  such that  

 
  
 
Then  
 
Write  

 
 and  

 
Then clearly   and  
 
Consider 

 
That is  and hence . 
 
If  have  contains  points more than , we repeat this 

reasoning  times and hence 

Similarly we can show that  

 

11.1.7  Theorem :  

Proof: For any partition  of   

 
Let  be the common refinement of two partitions  and  of  

By theorem 9.1.6,  
 
Then  
 
If  is fixed and the Supremum is taken over all  in (1), we have 
 

  

  
If the Infimum is taken over all  in (1), we have 
 

 . 

 
11.1.8  Theorem:  on  if and only if for every   there exists a 
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partition  of  such that . 
 
Proof: Assume that for each   , there exists a partition  of   such that 
 

 . 
 
Let  Then there exists a partition  of    such that 
 
    
 

By Theorem 11.1.7,  

 

Then  

 

Since  is arbitrary, we have  

 
Therefore   Conversely assume that  
 

Then  

 

Let  Then   , is not a lower bound of the set  

 Then there exists a partition  , of   
 

such that  

 

Now  is not an upper bound of the set  

 Then there exists a partition  , of   
 

such that  

 

 This implies that  

 
Let  be the common refinement of two partitions  and  . 
 
By Theorem 11.1.6, and by (2) and (3) we have  
 
  

 



Centre for Distance Education     11.6                 Acharya  Nagarjuna University 
 

This implies that  
 
Thus for given , there exists a partition  of    such that 
 

. 
 

11.1.9  Theorem: If  for some partition  of  and 
 
 for some , then  for any refinement  of . 
 
Proof: Suppose  for a partition of  such that  for  
 

some  Let  be arbitrary points of . 

 
Then by Theorem 11.1.6. 
 
  
 
This implies that . 
 

11.1.10  Theorem : If  for some partition  of    
   and for some . Let  be arbitrary points in  for  

Proof: Let  and  

  for . 

 
Then  and . This implies that 

 for  

 
This implies that  for  

 
Consider  

  
  

 

Therefore  

 
11.1.11 Theorem: If  and  for a partition  of  

and for some if  is an  arbitrary point in  for  then  

 
Proof: Suppose  
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Assume  for a partition  of  and for some 
 
 if  is an  arbitrary point in  for . 
 
Write  and  

  for  

 
Now  for  
 
Then  
 
  
 

Since  we have  

 

This implies that  

 
From (1) and (2), we have 
 

 (By assumption) and  

 

 and hence  

 

. 

 
11.1.12  Theorem : If  is continuous on  then on  
 
Proof: Suppose  is continuous on . Let   
 

Since  and  is monotonically increasing on . We have  
 
This implies  
 
Put  then  

 
Since  is continuous on  and since  is compact, by known theorem,  is 
 
uniformly continuous  Then there exists  such that 

 , whenever and . 
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Since , by Archimedian principle, there exists a positive integer  such that 

  

Write ,  

Then  is a partition of  such that  for  

 we have  

Then by (1),  

Write  and  

  for . 

Since  is continuous on , Since  is  also continuous on  Then by 

 Theorem there exists  such that  and  for  
  

Since  by (2), we have  

 
Consider  for  By (3)  

 
 for  

 
Consider  
 

 
 

 
So for given , there exists a partition  of    such that 
 

 Then by Theorem 11.1.8, . 
 
Thus every continuous function on  is Riemann Stieltjes integrable over 

  
 

11.1.13  Theorem: If  is monotonic on  and if  is monotonically increasing 
 
and continuous on  then . 
 
Proof: Suppose  is monotonic on  and   is monotonically increasing 
 

and continuous on . 
 
First we show that to each positive integer there exists a partition  
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 of  such that for 

. 
 
Let  be a positive integer. 
 

Put  

Write  for . 
 
Then   and  
 
  
 
Now  
 
Since  and continuous on  and  
 
by Theorem 11.1.18, there exists  such that  
 
Now   again by Theorem 11.1.18, there exists  such 

that  
 
Continuing in this way for , we have  such that 

 and  for  
 
Put  amd . Then   is a partition of  and 
 

  

Therefore  for  

 
So, for each positive integer , we have a partition    of  

such that  for  

 
Let  

Since  is monotonic on  We have either  is monotonically increasing or 
monotonically decreasing. 
 
Case (i): Suppose  is monotonically increasing. Then  
 
Since , by Archimedian principle, there exists a positive integer  such that 
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This implies  

   
For this positive integer ,  by(1) we have a partition    of 

 such that  for . 

 
Put  and  

  for  

 
Since f is monotonically increasing we have  and  
 
Consider  
 

  

 

  

 

  by(2) 

 
Therefore  
 
Case (ii): Suppose  is monotonically decreasing. Then  
 
Since , by Archimedian principle, there exists a positive integer  such that 

  

 
For this positive integer ,  by(1) we have a partition    of 

 such that  for . 

 
Since f is monotonically decreasing we have  and  
 
Consider  
 

  

 

  

 

  by(3) 
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Thus in any case, for , there exists a partition  of  such that 

  
 
Then by Theorem 11.1.8, . 

 
11.1.14  Theorem: Suppose  is bounded on  has finitely many points,        
 
of discontinuity on  and  is continuous at every point at which  is 
 
discontinuous. Then  show that   

 
Proof: Suppose  is bounded on  and  has only finitely many points of  

discontinuity on  and  is continuous at every point at which  is 
discontinuous. 
Let . Put  
 
Let  be the set of points at which  is discontinuous. Then  is finite  
 
So let  and assume that  
 
Write  then  

 
Since  is continuous at  there exists  such that  whenever 

 for  

 
Take  

 

Now choose  and  such that  for  

 
Now we will show that   are disjoint intervals. 

 
For this, it is enough if we show that  

 
Now consider  And hence  

 

This implies   and hence  

 
 This shows that   are disjoint. 

 
Since  and  by (1), we have  
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  and   for  

 
This implies that  for  

 
Consider . 

 
So,  is a finite class of disjoint intervals such that  

 and this class covers E and the sum of the corresponding  

 
differences  is less than . 

 
Also it is clear that every point of   lies in the interior of some  

 
Write  

 
Then  

 
It is clear that  is compact and  is continuous on  
 
By Theorem, 11.1.4,  is uniformly continuous on . Then there exists  

such that  whenever  
 
Now form a partition   of  as follows: Each  occurs  

 
in  No point of any segment  occurs in P. If  is not one of the , then 

 
  . 
 
Write  and  

  for . 

 
Assume  for  

 
If   and  by the definition of   and  etc. 
 
Therefore for any   implies that  and . 

 
Also for any ,  This implies that  
 
Let  Then  and  

by the definition of  . 
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Since  is continuous on  by Theorem 11.1.5 there exist   

such that , and . Consider . This 

implies that . 

 Consequent  
  

  

 
  

 
……………………………………………………. 
……………………………………………………. 
  

  

 
So for any  
 
Consider  
 
  

 

 
 
Thus for , there exists a partition  of  such that 
  
 
Then by Theorem 11.1.8, . 
 

11.1.15  Note: If  and  have a common point of discontinuity, then  need not be in . 
11.1.16  Example: Define ,by ,if  and if ,if  and 

 . 

Let  be a bounded function on  such that  is not continuous at .  
 
Now we will show that  on . 
 
Let  
 
Since  there exists a partition  of  such that  
 
  

Now, either  or  
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Suppose  Then  for some  such that  
 
Then  for  for  

 
And  
 
Write  and  

  for  

 
  and  

 
By (1) we have  

 
Choose  such that . Then  
 
Suppose  such that  Then  
 
This implies that  
 
If ; then  and  
 
  (by 5) 
 
If , then  and  
 
This implies that  (by 5) 
 
Therefore  is continuous at , which is contradiction.  
 
So in any case we have contradiction. 
 
Hence  on . 
 

11.1.17  Theorem: Suppose  on   for all  
 is continuous on  and on . Then  on 

. 

 
Proof: Suppose  on   for all  is  
 

continuous on  and on . 

 
Let  since  is continuous on  We have  is bounded on . 
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Then there exists a  such that  whenever  with  

. 
 
Choose  such that  
 
Then for any  with   we have  
 
Since  there exists a partition  of  such that  
 
  
 
Write  and   and 

 and   for 

. (Since  is bounded) 
 
Put  and 
 

  
 
Then   
 
First we show that  for all for  for  
 
Let . Then  and  
 

 implies that  and 
 
  
 
Next we will show that  and . 
 
Then  and  
 
This implies that  By(1) 
 
Consequently   
 
Consider  
 

 
 

 (by(3)) 
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So  implies that  
 
Next we will show that  implies that  
 
Suppose  For any   
 
Consider 

 

 
Therefore  
 
Consider  
 

 (by(2)) 
 
This implies that  and hence  
 
Now consider  
 

 
 

 (By (4) and (5)) 
 

  (By (6)) 

 

 
 

 
 

 
Thus for given  , there exists a partition  of  such that 
 
   and hence  on . 
 

11.1.18  Problem: If  for all irrational  and  for all rational  prove that 
 on  for any  . 

 
Solution: Let  be real numbers such that  
 

Let  be the function defined by  for all irrational  and  

for all rational  
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Let  be any partition of  
 
Write  and   for 

 
 
Then  and  for  
 

 and  
 

Then  

 

And  

 

Therefore  and hence  on . 

 

11.1.19  Problem: Suppose ,  is continuous on  and  
 
prove that for all . 
 

Solution: Suppose ,  is continuous on  and  

 
If possible suppose that  for some , then . Since  is 
 
continuous on ,  is continuous at . Then there exists  such that 

 whenever  with  
 
Now we will show that   for all . If possible suppose  
 
that    for some . Then  , and  
 
by (1), . 

 
Since , we have , a contradiction. 
 
So   for all . 
 
Since  on . We have  for all . 
 

This implies  and hence  a contradiction.  

 
So  for all  
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11.1.20  Problem: Suppose  increases on  and  and  is continuous 
 

at ,  and  if . Prove that  and that  

 
Solution : Let  be any partition of . 
 

Then  for some  such that  
 
Write  and  

  for . 

 
Then  for  and  and  and  for . 

 
Now  and  
 

Therefore  

 

And  

 

Now we will show that  

If possible suppose that . Choose  such that  

 
Since  is continuous at , there exists  such that  and 

 whenever  

 

Take  ,  ,  . 

 
Then  is a partition of  and  
 

Clearly,  

 
Then by (1)  

 
Clearly    
 

Consider  

 
Then by (1)  
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Consider  

 
Therefore  
 
  
 

Thus there exists a partition  of  such that . 

 
Which is a contradiction. 
 

So  and hence  

 

Consequently,  on  and . 

 
Short Answer Questions 

1. Define the upper Riemann integral and lower Riemann integral of a bounded function  
defined on  

 

2. Show that  
 
3. If  for all irrational  and  for all rational  prove that  on 

 for any  
 

Model Examination Questions 

1. Show that  on  if and only if for every   there exists a partition  of 
 such that . 

 
2. If  is continuous on  then show that   on . 
 
3. If  is monotonic on  and if  is monotonically increasing and continuous on  

then . 
 
4. Suppose  is bounded on  has finitely many points, of discontinuity on  and 

 is continuous at every point at which  is discontinuous. Then show that   
5. Suppose  increases on  and  and  is continuous at ,  and 

 if . Prove that  and that  
 

Exercises 

1. Define , by ,if  and if ,if  and Let  be a 
bounded function on . Show that  if and only if  and that 

then  
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Answers to Short Answer Questions: 

For 1 see definition 11.1.2 
 

For 2 see theorem 11.1.7 
 

For 3 see problem 11.1.18 
 

11.2  SUMMARY:  

This lesson delves into the concept of the Riemann-Stieltjes integral, covering its 
definition, properties, and applications. Learners will gain a comprehensive 
understanding of the integral's existence and computation for various functions. This 
Lesson covers Introduction to the Riemann-Stieltjes integral, Definition and existence 
of the integral, Proofs of key theorems, Computation of the Riemann-Stieltjes integral 
for various functions, Practice problems with solutions and exercise problems. 

11.3  TECHNICAL TERMS 

 Interval 
 Partition 
 Supremum and Infimum 
 Riemann Stieltjes integral 
 Bounded function 
 Monotonic 
 Upper and Lower Riemann Stieltjes integral 
 Refinement 
 Compact 
 Continuous 
 Uniformly Continuous 

11.4  SELF ASSESSMENT QUESTIONS 

1.  If  is monotonic on  and if  is monotonically increasing and continuous on 
 then . 

2.  Show that  on  if and only if for every   there exists a partition  
of  such that . 

3.  If  is monotonic on  and if  is monotonically increasing and continuous on 
 then . 

4.  If  for all irrational  and  for all rational  prove that  
on  for any  

5.  Show that . 
 

11.5  SUGGESTED READINGS: 

1.  Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International  
Editions Walter Rudin. 

2.   Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 
 

I. V. Venkateswara Rao 



 

LESSON-12 
 

PROPERTIES OF RIEMANN STIELTJES 

INTEGRAL 
 

 

OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To understand the Definition and properties of Riemann-stieltjes integral. 
 To compute the Riemann-stieltjes integral for various functions. 

 

STRUCTURE: 

12.0 INTRODUCTION  
12.1  PROPERTIES OF INTEGRAL  
12.2    SUMMARY  
12.3   TECHNICAL TERMS  
12.4   SELF ASSESSMENT QUESTIONS  
12.5   SUGGESTED READINGS 

12.0  INTRODUCTION: 

In this lesson the properties of Riemann-Stieltjes integral are studied. If   denotes the set 

of all real-valued functions  defined on  such that  on  then it is proved that 

 and  are in  for any  and for any real number  This shows that 

 is a vector space over the field of real numbers. Further it is proved that if   is 

bounded on   is continuous at  and  then  
 

12.1 PROPERTIES OF INTEGRAL 
 

12.1.1 Theorem: If    and  on  then  and 

. 

Proof: Suppose   and  on  

Put  

Let  

Since   and  on  by Theorem 11.1.8, there exist partitions  and  

 such that  

Let  be the common refinement of  and . Then by Theorem  11.1.9. 

  …………………….(1) 

And  ……………….(2) 

  
……………………(3) 



Centre for Distance Education 12.2                   Acharya Nagarjuna University 
 

  
……………………(4) 

From (3) and (4), we have  

 
This implies  

 
            By(1) and (2). 

Thus for Since  there exists a partition   of  such that 
 

Therefore   That is  

Next we will show that  

Let  be an arbitrary positive real number. 

Since  on    and 

. 

For   is not a lower bound of the set  is a partition   of 

 

Then  for some partitions  of  for  

  

Let  be the common refinement of  and  

Then  for   

Now 

   

This implies  

Since  is arbitrary, we have  

For   is not an upper bound of the set  is a partition   of 

 

Then  for some partitions  of  for   

This implies that 

  

 

Therefore  

Since  is arbitrary, we have 
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From (6) and (8),  

Then  

 
12.1.2 Theorem: If  on  and  is any constant, then on  

and . 

Proof: Suppose on  and  is any constant. 

If  then clearly  

Let . Suppose  

Since  there exists a partition  of  such 

that  

Write   and  

 for  

Consider  

Similarly,  for 

. 

Consider  

 

 
Therefore,  for some partition  of  

And hence  

So in this case  

Suppose  then . 

Since  there exists a partition  of  such that 

  

Consider   

 
Similarly  

 
This implies  

Similarly we can show that  

Consider  

 
Therefore  for some partition  of  

And hence . 
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Thus in any case . 

Next we will show  

Since  we have  

If  then  clearly  

Since , we have  

Suppose  

Then  and  for any partition  of 
 

Consider  

                                     
                                

     
     
     

                                     

Therefore  

Similarly we can prove for  we have  

Thus in any case  

 
12.1.3 Theorem: If  on  and  on  then 

. 

Proof:  Suppose   on  and  on  

Let  be any partition of  

Write   and  

 for  

Since  for all , 

we have  for all  for  

Then for  

This implies that  

Consider  

This shows that  is a lower bound of . 

Therefore  

Thus . 
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12.1.4 Theorem: If  on  and  then  on  and on  and 

 

Proof: Suppose  on  and  

Let   

First we show that there exists a partition  of  such that  and 

 

Since  , there exists a partition  of  such that 
 

Since  we have either  or  for some  such that  

If  then  So  is a partition of  such that  and 
  

Suppose  Then  is a partition of  

which is a refinement of   

Then by Theorem 11.1.6.,  

This implies that  

So, there exists a partition  of  such that  and  

Assume that the above partition  and  for some  such 

that  

Write  and  

Then  is a partition of  and  is a partition of  

 on  is  and  on  is  

Write   and  

 for  

Consider  

     

Similarly   

Consider . This implies that  

 and . 

That is  on  

And  on  

By Theorem 11.1.8  on  and  on  

Next we will show that  

Let  

Since  there exists a partition  of  such that   

 
Without loss of generality we may assume that  and suppose  for some  

such that  

Write  and  
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Then  is a partition of  and  is a partition of  such that 

  

Now  (By(1)) 

 
This implies that  

Since  is arbitrary, we have  

Consider  

        

        

Since  is arbitrary, we have  

From (2) and (3)  

 
12.1.5 Theorem:   on  and if   on  then 

 

Proof: Suppose  on  and    on . 

Since  on , we have  

Let  be a partition of  

Write   and  

 for  

Since   on , we have  for all . 

This implies that  for all  for  and hence  

 for  

Consider  

Consider  

 
This implies  

Consider  

 
This implies  
From (1), (2) and (3), we have  

  

And hence . 
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12.1.6 Theorem: If   and   on  then  on  and 

 

Proof: Suppose    and   on . Let  

Since   on  for  there exists  of  such that  

 
Let  be the common refinement of  and . 

Then by Theorem 11.1.6,  for 

 

 , for this implies that 

 

Assume  

Write   and  

 for  

Consider  
     
     
     

 
Therefore  

Similarly  

Now consider  

 (by 2) 

So for  there exists a partition  of  such that 

 and hence  

Next we will show that  

Since  we have . 

Consider  

 

 

 
Therefore  

Consider  
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Therefore  

From (3) and (4)  

 
12.1.7 Theorem: If  on  and  is a positive constant then  and 

. 

Proof: Suppose  on  and  is a positive constant. Since  and  is monotonically 

increasing,  is monotonically increasing. 

Let  

Since , there exists a partition  of  such that 

 
Write    and  

 for  

Consider  

 

 
Therefore  

Similarly  

Now consider     (By (1)) 

So for  there exists a partition  of  such that  and 

hence  

Next we will show that  

Since  we have . 

Consider  

 

 
                                                . 

 
12.1.8 Theorem: If  on  and  on , then  

(a)  

(b)  and  
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Proof: Suppose  on  and  on  
 

(a) First we show that , Since  is bounded, we have  for all 

 for some real numbers  and  

Define  as  for all  

Then  is continuous on  

Write . Then  for all . 

This implies . 

        By known Theorem,  and hence  

Since  on  by Theorem 12.1.1,  

By Theorem 12.1.1  

Therefore  and hence  
 

(b)  as  for all  

Then  is continuous on  

Write . Then  for all . 

This implies  

By theorem 11.1.16,  and hence . Choose  

So that  

Therefore  (Since ) 

So,  

12.1.9 Definition: The unit step function  is defined  by  

 
12.1.10 Note:  is continuous, at every point   is not continuous at  
 
12.1.11 Theorem: If   is bounded on   is continuous at  and  

then  

Proof: Suppose   is bounded on   is continuous at  and , for all 

. 

If  then  

If  then  Clearly  is not continuous at  

First we show that  on . 

Let . Put  

Since  is continuous at  there exists  such that  when  

with  That is  whenever 
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Write  Then  is a partition of 

 

Consider  

  

  

  

Consider  
  

  

Write   and  

 for  

 and  

Consider  

 
Now consider 

 

 (by (1)) 

 
Thus  for  there exists a partition  of  such that  and 

hence  

Next we will show that  

Let  be the partition as above. Then  and  

Consider  

 
This implies  

Also we have  

From (3) and (4), we have  (by (2)). 

This implies  

Since  is arbitrary, we have  

 
12.1.12 Theorem: Suppose  for  converges,  is a sequence of 

distinct points in  and  and  is continuous on . Then 

 

Proof: First we will show that  converges. 

For any   for  

Since  converges, by the comparison test  converges. 
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Next we will show that  is monotonically increasing. Suppose   such that 

 for all  This implies  and hence  

  

That is  

So  is monotonically increasing. 

Since   is continuous on  by Theorem 11.1.12,  

Since  for all   

Since  for all   

Since   is continuous on    is bounded on  

So put . 

Now we will show that  That is, we have to show that the 

sequence of partial sums of the series  converges to  

Let  write  

Since  converges, there exists a positive integer 

 such that  

Put  and   for all  

Then  and  and  are monotonically increasing on  since   is 

continuous on  by Theorem 11.1.12,  and  

For  Put  for all  

Since  and  is continuous at   and  is bounded on  by Theorem 11.1.11. 

 for  

By Theorem 11.1.6 and Theorem 11.1.7 

  

By  (2) 
Consider  (By(1)) 

By Theorem 11.1.5,   

Therefore  

 
This implies that  for all  

This shows that the sequence of partial sums of the series  converges to  

Hence  

 
12.1.13 Note: Let  be defined  for some constant  and for all  

Then  on  and  

For this let  be a partition of  
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Write  and  

 for  

Then  and  for  

  

Similarly,   

Therefore  for any  and hence  on  

Consider  

Therefore  

 
12.1.14 Theorem : Assume  increases monotonically on  and  on . Let  be 

a bounded real function defined on  Then  on  if and only if  In that 

case  

Proof: Suppose  increases monotonically on  and also assume that  be a bounded real 

function defined on  

Let  

Since  there exists a partition   of  such that 

 

Since  exists,  is differentiable on  Then  is continuous on  and  is 

differentiable on  This implies  is continuous on  and  is differentiable on 

 for . So by mean value theorem, there exists a point   such 

that  for . 

That is  for  

Since  is bounded on . Put  

Now we will show that  

 

 
 

Let    for  Then by Theorem 11.1.10 and by (1), 

 
Consider  
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This implies that  and 

 

Write  and for  

Then from (3),  

 
This implies that  

Write  and  

 for  

Then from (3),  

This implies that  

Therefore inequalities (5) and (6) are true for any  for . 

Consider  

 

 
Therefore  

Similarly  

From (5)  is an upper bound of  and From (6) 

  is a lower  bound of . 

From (7) and (8)  and 
  

Therefore  

  

Similarly from (4) we can show that  
  

Now, we will show that  on  if and only if  on  

Suppose  on  

Let  Put  

Since  on  there exists a partition  of  such that  
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Since  on  there exists a partition  of  such that 

 

Write  Then  is a partition of  and  is the common refinement of  and  
Then by Theorem 11.1.6. 

 and  

This implies that  satisfies (9), (10), (11) and (12)  

Consider  

  
From the above two in equalities 
 . 

Therefore for  

there exists a partition  of  such that  

and hence  on . 

Conversely  on . 

Let  

Put  

Since  on  there exists a partition  of  such that  

Since   on  there exists a partition  of  such that 

 

Write  Then  is a partition of  and  is the common refinement of  and  
Then by Theorem 11.1.6. 

 and  

This implies that  satisfies (9), (10), (11) and (12) 
Now consider, 

. 

Thus for  

there exists a partition  of  such that  

and hence  on . 

Now we will show that  

Let  

Put  

Since  on  there exists a partition  of  such that  

Let  be any partition of  Put . Then  is the common refinement of  and  and 

 

Now,  satisfies (9), (10), (11) and (12) for  

Consider  

 
                          

This implies that  for any partition  of . 
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Consider  

 
                          

Therefore  for any partition  of . 

Now  

And  

Therefore  

This implies  

Since  is arbitrary, we have  

 
12.1.15 Theorem (Change of variable): Suppose  is a strictly increasing continuous function 

that maps an interval  onto . Suppose  is monotonically increasing on  and 

 on . Define  and  on  by , . Then 

 and . 

Proof: Since   is a bounded function and so  is bounded 

Since  is onto,   

This implies that  is bounded, hence  is bounded. 

Let  be such that . 

Since  is increasing on   

Since  is monotonically increasing on  we have  

This implies that  and hence  is monotonically increasing on  

Next we will prove that  and  

Clearly , This implies that  

Since  is onto and , there exists  such that  

If  then  (Since  is strictly increasing). 

This implies that  a contradiction. 

So  and hence . 

Similarly, we can show that  

Let  be a partition of  

Then   and  

This implies that  

Take  then  

. So  be a partition of  such that 

 . 

Conversely Let  be a partition of  

Then  

Since  is onto, for each  there exists  such that . 
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This implies that  

 and . Since  is strictly increasing, we have  is one-one. 

Since  and  we have , . 

Also . 

So  is a partition of  such that  

Next we will prove that  

Let  Then  for some . 

Since  is onto, there exists  such that  

Consider  This implies that  

So,  

Let . Then  for some  

Now . This implies that .  

Since  we have  and so  

Hence  

Let  be a partition of  then there exists a partition 

 of  such that    

This implies that  for  

Write  and  

  and 

Write  and  

  

For , Consider 
 

This implies that  for  Similarly  for  

Consider  

. 

Therefore  

Similarly we can show that  

Let  

Since ,  there exists a partition  of  such that 

 
Since  is a partition of   by the above facts, we have a partition  of  such that 

 and . 

Then by (1)  

Therefore  on  

Consider  
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Hence  

 
Short Answer Questions 

 
1. If   and   on  and  on  then show that 

. 

2.  Define the unit step function I and show that I is continuous at every point  

3.  Let be defined by  for some constant  and for all . 

 
Model Examination Questions 

 
1. If  on  and  then  on  and on  and 

 

2. If   is bounded on   is continuous at  and  then 

 

3. Suppose  is a strictly increasing continuous function that maps an interval  onto 

. Suppose  is monotonically increasing on  and  on . Define  

and  on  by , . Then  and 

. 

Exercises 
 

1. Suppose is a bounded real function on  and  . Does it follow that 

 Does the answer change if we assume that ? 
 

Answers to Short Answer Questions 
 

For 1, see theorem 12.1.3. 

For 2, see definition 12.1.9 

For 3, see note 12.1.13 

 
12.2  SUMMARY:  

This lesson provides a comprehensive introduction to the Riemann-Stieltjes integral, 
covering its definition, properties, and applications. Learners will develop a deep 
understanding of the integral's properties and learn how to compute it for various 
functions. The Lesson Components are Introduction to the Riemann-Stieltjes integral, 
Definitions and properties of the integral, Theorems with proofs, Exercise problems to 
reinforce understanding. 
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12.3  TECHNICAL TERMS: 

 Partition 
 Riemann Stieltjes Integral 
 Commom Refinement 
 Monotonically increasing 
 Bounded 
 Continuous 
 Unit Step function 
 Converges 
 Sequence and series. 

 

12.4  SELF ASSESSMENT QUESTIONS: 

1. If   is bounded on   is continuous at  and  then 

 

2. Suppose  is a strictly increasing continuous function that maps an interval  onto 

. Suppose  is monotonically increasing on  and  on . Define  

and  on  by , . Then  and 

. 

3. Suppose is a bounded real function on  and  . Does it follow that 

 Does the answer change if we assume that ? 
 
12.5  SUGGESTED READINGS: 

1.  Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 

2.     Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 
1985. 

 
I. V. Venkateswara Rao 



LESSON-13 

INTEGRATION AND DIFFERENTIATION 
 
OBJECTIVES: 

The objective of the lesson is to help the learners to understand 

 To prove integrations and differentiation are (in a certain sense) inverse operations 
and prove a selection of theorems concerning integration. 

 To understand the relationship between integration and differentiations. 
 

STRUCTURE: 
 

13.0 INTRODUCTION 
13.1  INTEGRATIONAND DIFFERENTIATION 
13.2    SOME MORE EXAMPLES WITH SOLUTIONS  
13.3    SUMMARY 
13.4    TECHNICAL TERMS 
13.5    SELF ASSESSMENT QUESTIONS 
13.6    SUGGESTED READINGS 

 

13.0  INTRODUCTION: 
 

In this lesson, it has been shown that integration and differentiation are, in certain 
sense, inverse operations. The fundamental theorem of calculus and integration by parts 
are proved. Also the integration of vector valued function is studied. (Further rectifiable 
curve is defined and it is proved that every continuously differentiable curve on [𝑎, 𝑏] is 
rectifiable). 
 
13.1 INTEGRATIONAND DIFFERENTIATION: 
 
13.1.1 Theorem:  Let 𝑓 be a real valued function on [𝑎, 𝑏] such that 𝑓 ∈ 𝑅[𝑎, 𝑏]. For  

𝑎 ≤ 𝑥 ≤ 𝑏, put 𝐹(𝑥) = ∫ 𝑓(𝑡)
௫

௔
𝑑𝑡. Then 𝐹  is continuous on [𝑎, 𝑏]; furthermore, if 𝑓  is 

continuous at a point 𝑥଴ of [𝑎, 𝑏], then 𝐹 is differentiable at 𝑥଴ and 𝐹ᇱ(𝑥଴) = 𝑓(𝑥଴). 
Proof: Given that 𝑓 is a real valued function defined on [𝑎, 𝑏]  such that 𝑓 ∈ 𝑅[𝑎, 𝑏]. 

Also given that for ≤ 𝑥 ≤ 𝑏, 𝐹(𝑥) = ∫ 𝑓(𝑡)
௫

௔
𝑑𝑡. 

Since 𝑓 ∈ 𝑅[𝑎, 𝑏] is bounded on [𝑎, 𝑏]. Then there exists an 𝑀 such that |𝑓(𝑡)| ≤ 𝑀 for 
all 𝑡 ∈ [𝑎, 𝑏). 

Let 𝜀 > 0. Write 𝛿 =
ఌ

ெାଵ
, Then 𝛿 > 0. 

Let 𝑥, 𝑦 ∈ [𝑎, 𝑏] such that 𝑥 < 𝑦 and |𝑥 − 𝑦| < 𝛿. 

Consider |𝐹(𝑥) − 𝐹(𝑦)| = ห− ∫ 𝑓(𝑡)
௫

௔
𝑑𝑡 − ∫ 𝑓(𝑡)

௬

௔
𝑑𝑡ห 

ห− ∫ 𝑓(𝑡)
௬

௫
𝑑𝑡ห = ห∫ 𝑓(𝑡)

௬

௫
𝑑𝑡ห ≤ 𝑀(𝑦 − 𝑥)  (By theorem) 

                        = 𝑀(𝑥 − 𝑦) < 𝑀𝛿 < (𝑀 + 1)𝛿 < 𝜀. 
So for 𝜀 > 0, there exists 𝛿 > 0 such that |𝐹(𝑥) − 𝐹(𝑦)| < 𝜀, whenever |𝑥 − 𝑦| < 𝛿. 
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This implies that 𝐹 is uniformly continuous and hence 𝐹 is continuous on [𝑎, 𝑏]. 
Suppose 𝑓 is continuous at a point 𝑥଴ ∈ [𝑎, 𝑏] . 
Now we will show that 𝐹 is differentiable at 𝑥଴ and 𝐹ᇱ(𝑥଴) = 𝑓(𝑥଴). 

Define ℎ(𝑡) =
ி(௧)ିி(௫బ)

௧ି௫బ
 for all 𝑡 such that 𝑎 < 𝑡 < 𝑏 and t≠ 𝑥଴. 

Now we show that lim௧→௫బ
ℎ(𝑡) = 𝑓(𝑥଴) 

Let 𝜀 > 0. Since 𝑓 is continuous at 𝑥଴, there exists a 𝛿 > 0 such that |𝑓(𝑥଴) − 𝑓(𝑡)| < 𝜀 
whenever 𝑡 ∈ [𝑎, 𝑏] with |𝑥଴ − 𝑡| < 0 … … . (1) 
Suppose 0 < |𝑡 − 𝑥଴| < 0. Then 𝑥଴ − 𝛿 < 𝑡 < 𝑥଴ + 𝛿. 
This implies that either 
 𝑥଴ − 𝛿 < 𝑥଴ < 𝑡 < 𝑥଴ + 𝛿 or 𝑥଴ − 𝛿 < 𝑡 < 𝑥଴ < 𝑥଴ + 𝛿. 
Suppose 𝑥଴ − 𝛿 < 𝑡 < 𝑥଴ < 𝑥଴ + 𝛿. 

Consider |ℎ(𝑡) − 𝑓(𝑥଴)| = ቚ
ி(௧)ିி(௫బ)

௧ି௫బ
− 𝑓(𝑥଴)ቚ 

   =
ଵ

௫బି௧
ቚ∫ 𝑓(𝑢)

௫బ

௫
𝑑𝑢 − ∫ 𝑓(𝑢)

௧

௔
𝑑𝑢 − 𝑓(𝑥଴)(𝑥଴ − 𝑡)ቚ  

   =
ଵ

௫బି௧
ห∫ 𝑓(𝑢)

௫బ

௧
𝑑𝑢 − 𝑓(𝑥଴)(𝑥଴ − 𝑡)ห  

   =
ଵ

௫బି௧
ห∫ 𝑓(𝑢)

௫బ

௧
𝑑𝑢 − ∫ 𝑓(𝑥଴)

௫బ

௧
𝑑𝑢ห  

   =
ଵ

௫బି௧
ห∫ (𝑓(𝑢)

௫బ

௧
− 𝑓(𝑥଴))𝑑𝑢ห  

                                <
ଵ

௫బି௧
𝜀(𝑥଴ − 𝑡) = 𝜀 (by (1))  

Therefore |ℎ(𝑡) − 𝑓(𝑥଴)| < 𝜀 
Similarly we can show that 𝑥଴ − 𝛿 < 𝑡 < 𝑥଴ < 𝑥଴ + 𝛿, then |ℎ(𝑡) − 𝑓(𝑥଴)| < 𝜀. 

So, lim௧→௫బ
ℎ(𝑡) = 𝑓(𝑥଴). That is lim௧→௫బ

ி(௧)ିி(௫బ)

௧ି௫బ
= 𝑓(𝑥଴). 

This shows that 𝐹 is differentiable at 𝑥଴ and 𝐹ᇱ(𝑥଴) = 𝑓(𝑥଴). 
 

13.1.2  Theorem: (The Fundamental theorem of Calculus): 
If  𝑓 ∈ 𝑅[𝑎, 𝑏] and if there is a differentiable function 𝐹 on [𝑎, 𝑏] such that 𝐹ᇱ = 𝑓, then 

∫ 𝑓(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎). 

Proof: Suppose 𝑓 ∈ 𝑅[𝑎, 𝑏] and 𝐹 is a differentiable function on [𝑎, 𝑏] such that 𝐹ᇱ = 𝑓. Let 𝜀 
be any positive real number. 
Since 𝑓 ∈ 𝑅[𝑎, 𝑏], there exists a partition 𝑃 = {𝑥଴, 𝑥ଵ, 𝑥ଶ, … . . , 𝑥௡} of [𝑎, 𝑏] such that 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀 … … … . . (1), 
Since 𝐹 is differentiable on [𝑎, 𝑏], 𝐹 is differentiable on [𝑥௜ିଵ,𝑥௜] for 1 ≤ 𝑖 ≤ 𝑛. 

This implies that 𝐹 is differentiable on (𝑥௜ିଵ,𝑥௜) and 𝐹 is continuous on [𝑥௜ିଵ,𝑥௜]  

for 1 ≤ 𝑖 ≤ 𝑛. 

By Mean Value theorem, there exists 𝑡௜ ∈ (𝑥௜ିଵ,𝑥௜)  such that 

 𝐹(𝑥௜) − 𝐹(𝑥௜ିଵ) = 𝑓(𝑡௜)(𝑥௜ − 𝑥௜ିଵ) for 1 ≤ 𝑖 ≤ 𝑛. 
Since 𝐹ᇱ = 𝑓 on [𝑎, 𝑏]. We have 𝐹(𝑥௜) − 𝐹(𝑥௜ିଵ) = 𝑓(𝑡௜)∆𝑥௜ for 1 ≤ 𝑖 ≤ 𝑛. 

Now ∑ 𝑓(𝑡௜)∆𝑥௜
௡
௜ୀ = ∑ ൫𝐹(𝑥௜) − 𝐹(𝑥௜ିଵ)൯௡

௜ୀ = 𝐹(𝑏) − 𝐹(𝑎). 

Therefore 𝐿(𝑃, 𝑓) = ∑ 𝑚௜∆𝑥௜
௡
௜ୀଵ ≤ ∑ 𝑓(𝑡௜)∆𝑥௜

௡
௜ୀଵ ≤ ∑ 𝑀௜∆𝑥௜

௡
௜ୀଵ = 𝑈(𝑃, 𝑓) 
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Where 𝑀௜ = 𝑆𝑢𝑝൛𝑓(𝑥)|𝑥 ∈ [𝑥௜ିଵ,𝑥௜]ൟ and 𝑚௜ = 𝐼𝑛𝑓൛𝑓(𝑥)|𝑥 ∈ [𝑥௜ିଵ,𝑥௜]ൟ for 1 ≤ 𝑖 ≤

𝑛. 
So 𝐿(𝑃, 𝑓) ≤ 𝐹(𝑏) − 𝐹(𝑎) ≤ 𝑈(𝑃, 𝑓)…………………..(2) 

Also 𝐿(𝑃, 𝑓) ≤ ∫ 𝑓(𝑥)
௕

௔
𝑑𝑥 ≤ 𝑈(𝑃, 𝑓)…………………..(3) 

From (1), (2) and (3), ቚ𝐹(𝑏) − 𝐹(𝑎) − ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
ቚ < 𝜀. 

Since 𝜀 > 0 is arbitrary ∫ 𝑓(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎). 

 

13.1.3  Theorem: (Integration by parts): Suppose 𝐹 and 𝐺 are differentiable functions on 
[𝑎, 𝑏]  𝐹ᇱ = 𝑓 ∈ 𝑅 and 𝐺ᇱ = 𝑔 ∈ 𝑅 then 

 ∫ 𝐹(𝑥)𝑔(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏)𝑔(𝑏)𝐹(𝑎)𝐺(𝑎) − ∫ 𝑓(𝑥)𝐺(𝑥)𝑑𝑥.

௕

௔
 

Proof: Suppose 𝐹 and 𝐺 are differentiable functions on [𝑎, 𝑏]  𝐹ᇱ = 𝑓 ∈ 𝑅 and 𝐺ᇱ = 𝑔 ∈ 𝑅. 
Define 𝐻 on [𝑎, 𝑏] as 𝐻(𝑥) = 𝐹(𝑥)𝐺(𝑥) for any 𝑥 ∈ [𝑎, 𝑏]. 
Since 𝐹 and 𝐺 are differentiable on [𝑎, 𝑏], 𝐻 is also differentiable  on [𝑎, 𝑏] and 

𝐻ᇱ = 𝐹ᇱ𝐺 + 𝐺ᇱ𝐹ᇱ = 𝑓𝐺 + 𝑔𝐹. 
Since 𝐺 is differentiable on [𝑎, 𝑏], 𝐺 is continuous on [𝑎, 𝑏]. 
Then by Known theorem, 𝐺 ∈ 𝑅. Therefore 𝑓𝐺 ∈ 𝑅 similarly 𝑔𝐹 ∈ 𝑅. 
By theorem 12.1.1. 𝑓𝐺 + 𝑔𝐹 ∈ 𝑅; That is 𝐻ᇱ ∈ 𝑅. 

Put ℎ = 𝐻ᇱ. By theorem 13.1.2 ∫ ℎ(𝑥)
௕

௔
𝑑𝑥 = 𝐻(𝑏) − 𝐻(𝑎). 

But ∫ ℎ(𝑥)
௕

௔
𝑑𝑥 = ∫ (𝑓(𝑥)𝐺(𝑥) + 𝑔(𝑥)𝐹(𝑥))

௕

௔
𝑑𝑥 

= ∫ 𝑓(𝑥)𝐺(𝑥)
௕

௔
+ ∫ 𝑔(𝑥)𝐹(𝑥)

௕

௔
 𝑑𝑥 

Therefore, ∫ ℎ(𝑥)
௕

௔
𝑑𝑥 = ∫ 𝑓(𝑥)𝐺(𝑥)

௕

௔
+ ∫ 𝑔(𝑥)𝐹(𝑥)

௕

௔
 𝑑𝑥 

= 𝐹(𝑏)𝐺(𝑏) − 𝐹(𝑎)𝐺(𝑎) 

And hence ∫ 𝐹(𝑥)𝑔(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏)𝑔(𝑏)𝐹(𝑎)𝐺(𝑎) − ∫ 𝑓(𝑥)𝐺(𝑥)𝑑𝑥.

௕

௔
 

 

13.2  SOME MORE EXAMPLES WITH SOLUTIONS: 
 

13.2.1 Example :  Suppose 𝑓 is a bounded real function on [𝑎, 𝑏] and 𝑓ଶ ∈ 𝑅 on [𝑎, 𝑏]. Does 
it follow that 𝑓 ∈ 𝑅? Does the answer change if we assume that 𝑓ଷ ∈ 𝑅? 

Solution.  The integrability of 𝑓ଶ does not imply the integrability of 𝑓. 

For example, one could let 𝑓(𝑥) = −1 if 𝑥 is irrational and 𝑓(𝑥) = 1 if 𝑥 is rational. 

Then every upper Riemann sum of 𝑓 is 𝑏 − 𝑎 and every lower sum is 𝑎 − 𝑏. 

However, 𝑓ଶ, being the constant function 1, is integrable. 

     The integrability of 𝑓ଷ does imply the integrability of 𝑓,  By Known theorem with 

𝜑(𝑢) = √𝑢
య

. 

13.2.2 Example :  Suppose 𝑓 is a real function on [0,1] and 𝑓 ∈ 𝑅 on [𝑐, 1] for every 𝑐 > 0. 

Define ∫ 𝑓(𝑥)
ଵ

଴
𝑑𝑥 = lim௖→଴ା ∫ 𝑓(𝑥)

ଵ

௖
𝑑𝑥 if this limit exists (and is finite) 
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(a) If 𝑓 ∈ 𝑅 on [0,1] show that this definition of the integral agree. 
(b) Construct a function 𝑓 such that the above limit exists, although it fails to exist with 

|𝑓| in place of 𝑓. 

 Solution. Suppose 𝑓 ∈ 𝑅 on [0,1]. 

Let 𝜖 > 0 be given 

And let 𝑀 = sup{|𝑓(𝑥): 0 ≤ 𝑥 ≤ 1|}. 

Let 𝑐 ∈ ቀ 0,
ఢ

ସெ
ቃ  be fixed, 

And consider any partition of [0,1] containing 𝑐 for which the upper and lower Riemann 

sums ∑ 𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ and ∑ 𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ of 𝑓 differ by less than 
ఢ

ସ
. 

Then the partition of [𝑐, 1] formed by the points of this partition that lie in this interval 

certainly has the property that its upper and lower Riemann sums∑ ′𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ and 

∑ ′𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ of 𝑓 differ by less than 
ఢ

ସ
. 

 Moreover, the terms of the original upper and lower Riemann sums not found in the 

sums for the smaller interval amount to less than 
ఢ

ସ
. 

In short, we have shown that for 𝑐 <
ఢ

ସெ
 and a suitable partition containing 𝑐, 

෍ 𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ −
𝜖

4
< න 𝑓(𝑥)

ଵ

଴

𝑑𝑥 ≤ ෍ 𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ +
𝜖

4
 

and   

                            ∑ ′𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ −
ఢ

ସ
< ∫ 𝑓(𝑥)

ଵ

௖
𝑑𝑥 ≤ ∑ ′𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ +

ఢ

ସ
. 

Moreover, we have also shown that  

ቚ෍ 𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ − ෍ ′𝑀௝ ൫𝑡௝ − 𝑡௝ିଵ൯ቚ <
𝜖

4
 

and  

ቚ෍ 𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ − ෍ ′𝑚௝ ൫𝑡௝ − 𝑡௝ିଵ൯ቚ <
𝜖

4
 

Combining these inequalities, we find that 

ቮන 𝑓(𝑥)

ଵ

଴

𝑑𝑥 − න 𝑓(𝑥)

ଵ

௖

𝑑𝑥ቮ < 𝜖 
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If 0 < 𝑐 <
ఢ

ସெ
𝑢 

(b ) Let 𝑓(𝑥) = (−1)௡(𝑛 + 1) 

for 
ଵ

௡ାଵ
< 𝑥 ≤

ଵ

௡
, 𝑛 = 1,2, …. Then if 

ଵ

ேାଵ
< 𝑐 ≤

ଵ

ே
 we have 

∫ 𝑓(𝑥)
ଵ

௖
𝑑𝑥 = (−1)ே(𝑁 + 1) ቀ

ଵ

ே
− 𝑐ቁ + ∑

(ିଵ)ೖ

௞

ேିଵ
௞ୀଵ . 

 Since 0 ≤
ଵ

ே
− 𝑐 ≤

ଵ

ே
−

ଵ

ேାଵ
=

ଵ

ே(ேାଵ)
, the first term on the right hand side tends to zero 

as 𝑐 ↓ 0, while the sum approaches ln 2. 

Hence this integral approaches a limit. However, 

                         ∫ |𝑓(𝑥)|
ଵ

௖
𝑑𝑥 = (𝑁 + 1) ቀ

ଵ

ே
− 𝑐ቁ + ∑

ଵ

௞

ேିଵ
௞ୀଵ , 

and in this case the first term on the right-hand side tends to zero as 𝑐 ↓ 0, while the sum 
tends to infinity.  

13.2.3 Example :  Suppose 𝑓 ∈ 𝑅 on [𝑎, 𝑏] for every Suppose 𝑏 > 𝑎, where 𝑎 isfixed. 

Define ∫ 𝑓(𝑥)
ஶ

௔
𝑑𝑥 = lim௫→ஶ ∫ 𝑓(𝑥)

௕

௔
𝑑𝑥 

If this limit exists (and is finite). In that case, we say that the integral on the left converges. If 
it also converges after 𝑓 has been replaced by |𝑓|, it is said to converge absolutely. 

       Assume that 𝑓(𝑥) ≥ 0 and that 𝑓 decreases monotonically on [1, ∞). Prove that 

∫ 𝑓(𝑥)
ஶ

ଵ
𝑑𝑥 converges if and only if ∑ 𝑓(𝑛)ஶ

௡ୀଵ  converges. (This is the so-called “ integral 

test” for convergence of series.) 

Solution.  Since both the series and the integral are increasing functions of their upper limits, 
it suffices to show that they are bounded together. 

Define 𝑓(𝑥) = 𝑓(1) for 0 ≤ 𝑥 ≤ 1. 

The upper Riemann sum for this partition is ∑ 𝑓(𝑘)௡ିଵ
௞ୀଵ  and 

The lower Riemann sum is ∑ 𝑓(𝑘)௡
௞ୀଵ . 

Hence we have  

෍ 𝑓(𝑘)

௡

௞ୀଵ

≤ න 𝑓(𝑥)
௡

଴

𝑑𝑥 = 𝑓(0) + න 𝑓(𝑥)
௡

ଵ

𝑑𝑥 ≤ ෍ 𝑓(𝑘)

௡ିଵ

௞ୀଵ

= 𝑓(0) + ෍ 𝑓(𝑘)

௡ିଵ

௞ୀଵ

. 

This shows that  

−𝑓(0) + ∑ 𝑓(𝑘)௡
௞ୀଵ ≤ ∫ 𝑓(𝑥)

௡

ଵ
𝑑𝑥 ≤ ∑ 𝑓(𝑘)௡ିଵ

௞ୀଵ , 
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And hence the sum and the integral converge or diverge together.  

13.2.4 Example : Define 𝑓(𝑥) = ∫ sin(𝑡ଶ)
௫ାଵ

௫
𝑑𝑡. 

(a) Prove that |𝑓(𝑥)| < 1/𝑥 if  𝑥 > 0. 
(b) Prove that 2𝑥𝑓(𝑥) = cos(𝑥ଶ) − cos[(𝑥 + 1)ଶ] + 𝑟(𝑥), 

Where |𝑟(𝑥)| <
௖

௫
, and 𝑐 is constant. 

(c) Find the upper and lower limits of 𝑥𝑓(𝑥) as 𝑥 → ∞. 

(d) Does ∫ sin(𝑡ଶ)
ஶ

଴
𝑑𝑡 converge? 

Solution.  (a) This inequality is obvious if 0 < 𝑥 ≤ 1. 

Hence we assume 𝑥 > 1. 

We observe that  

𝑓(𝑥) <
cos(𝑥ଶ)

2𝑥
−

cos[(𝑥 + 1)ଶ]

2(𝑥 + 1)
+

1

2𝑥
−

1

2(𝑥 + 1)
 

=
1 + cos(𝑥ଶ)

2𝑥
−

1 + cos[(𝑥 + 1)ଶ]

2(𝑥 + 1)
 

≤
1 + cos(𝑥ଶ)

2𝑥
 

≤
1

𝑥
 

A similar argument shows that 

𝑓(𝑥) >
cos(𝑥ଶ)

2𝑥
−

cos[(𝑥 + 1)ଶ]

2(𝑥 + 1)
−

1

2𝑥
+

1

2(𝑥 + 1)
 

=
−1 + cos(𝑥ଶ)

2𝑥
−

−1 + cos[(𝑥 + 1)ଶ]

2(𝑥 + 1)
 

=
−1 + cos(𝑥ଶ)

2𝑥
+

−1 − cos[(𝑥 + 1)ଶ]

2(𝑥 + 1)
 

≥
−1 + cos(𝑥ଶ)

2𝑥
 

≥
−1

𝑥
 

(b ) The expression just written for 𝑓(𝑥) shows that 

2𝑥𝑓(𝑥) = cos(𝑥ଶ) − cos[(𝑥 + 1)ଶ] + 𝑟(𝑥), 
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Where  

𝑟(𝑥) = ൬
1

𝑥 + 1
൰ cos[(𝑥 + 1)ଶ] −

𝑥

2
න

cos 𝑢

𝑢
ଷ

ଶൗ

(௫ାଵ)మ

௫మ

 𝑑𝑢. 

If we integrate by parts again, we find that 

න
cos 𝑢

𝑢
ଷ

ଶൗ

(௫ାଵ)మ

௫మ

 𝑑𝑢 =
sin[(𝑥 + 1)ଶ]

(𝑥 + 1)ଷ
−

sin[𝑥ଶ]

𝑥ଷ
+

3

2
න

sin 𝑢

𝑢
ହ

ଶൗ

(௫ାଵ)మ

௫మ

 𝑑𝑢. 

We now observe that the absolute value of this last integral is at most 

3

2
න

1

𝑢
ହ

ଶൗ

ஶ

௫మ

 𝑑𝑢 = ቂ−𝑢
ଷ

ଶൗ ቃ
௫మ

ஶ
= 𝑥ିଷ 

It then follows by collecting the terms that  

|𝑟(𝑥)| <
3

𝑥
. 

(c ) Since 𝑟(𝑥) → 0, the upper and lower limits of 𝑥𝑓(𝑥) will be the corresponding limits 
of  

cos(𝑥ଶ) − cos[(𝑥 + 1)ଶ]

2
= sin ൬𝑥ଶ + 𝑥 +

1

2
൰ sin ൬𝑥 +

1

2
൰. 

We can write this last expression as sin 𝑠 sin ቀ𝑠ଶ +
ଵ

ସ
ቁ, where 𝑠 = 𝑥 +

ଵ

ଶ
. 

We claim that the upper limit of this expression is 1 and the lower limit is -1. 

Indeed, let 𝜖 > 0 be given. 

Choose 𝑛 to be any positive integer larger than 
ଶିఢ

଼ఢ
. 

Then the interval ቆ
ଵ

ସ
+ ൬ቀ2𝑛 +

ଵ

ଶ
ቁ 𝜋 − 𝜖൰

ଶ

,
ଵ

ସ
+ ൬ቀ2𝑛 +

ଵ

ଶ
ቁ 𝜋 + 𝜖൰

ଶ

ቇ is longer than 2 𝜋, 

And hence there exists a point 𝑡 ∈ ൬ቀ2𝑛 +
ଵ

ଶ
ቁ 𝜋 − 𝜖, ቀ2𝑛 +

ଵ

ଶ
ቁ 𝜋 + 𝜖൰  

at which sin ቀ𝑡ଶ +
ଵ

ସ
ቁ = 1 and also a point 𝑢 in the same interval at which 

sin ൬𝑢ଶ +
1

4
൰ = −1 
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But then 𝑡𝑓(𝑡) > 1 − 𝜖 and 𝑢𝑓(𝑢) < −1 + 𝜖 

It follows that the upper limit is 1 and the lower limit is −1. 

(This argument actually shows that the limit points of 𝑥𝑓(𝑥) fill up the entire interval 
[−1,1]. ) 

(d ) The integral does converge. 

We observe that for integers 𝑁 we have 

න sin(𝑡ଶ)

ே

଴

𝑑𝑡 = ෍ 𝑓(𝑘)

௡

௞ୀଵ

 

= 𝑓(0) + ෍
𝑟(𝑘)

𝑘

ே

௞ୀଵ

+ ෍
cos(𝑘ଶ) − cos[(𝑘 + 1)ଶ]

𝑘

ே

௞ୀଵ

 

= 𝑓(0) + ෍
𝑟(𝑘)

𝑘

ே

௞ୀଵ

+ ቈ
cos(1)

2
−

cos[(𝑁 + 1)ଶ]

𝑁
቉ + ෍

cos(𝑘ଶ)

𝑘(𝑘 − 1)

ே

௞ୀଶ

 

The first sum on the right converges since |𝑟(𝑘)| <
ଷ

௞
, and the  rest obviously converges. 

Hence we will be finished if we show that  

lim
௫→ஶ

න sin(𝑡ଶ)

௫

[௫]

𝑑𝑡 = 0, 

Where [𝑥] is the largest such that [𝑥] ≤ 𝑥 < [𝑥] + 1. 

But this is easily done using integration by parts. 

The integral equals 

cos[𝑥]ଶ

2[𝑥]
−

cos(𝑥ଶ)

𝑥ଶ
− න

cos 𝑢

4𝑢
ଷ

ଶൗ

௫మ

[௫]మ

 𝑑𝑢 

And this expression obviously tends to zero as 𝑥 → ∞. 

13.2.5 Example : Deal similarly with 𝑓(𝑥) = ∫ sin(𝑒௧)𝑑𝑡
௫ାଵ

௫
. 

Show that 

                                𝑒௫|𝑓(𝑥)| < 2 
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and that 

                            𝑒௫𝑓(𝑥) = cos(𝑒௫) − 𝑒ିଵ cos(𝑒௫ାଵ) + 𝑟(𝑥), 

Where |𝑟(𝑥)| < 𝐶𝑒ି௫ for some constant 𝐶. 

 Solution.  The arguments are completely analogous to the preceding problem. 

The substitution 𝑢 = 𝑒௧ changes to 𝑓(𝑥) into  

𝑓(𝑥) = න
sin 𝑢

𝑢
𝑑𝑢

௘ೣశభ

௘ೣ

, 

and then integration by parts yields 

𝑓(𝑥) =
cos(𝑒௫)

𝑒௫
−

cos(𝑒௫ାଵ)

𝑒௫ାଵ
− න

cos 𝑢

𝑢ଶ
𝑑𝑢

௘ೣశభ

௘ೣ

 

from which it then follows that 

−
1 − cos(𝑒௫)

𝑒௫
≤ 𝑓(𝑥) ≤

1 + cos(𝑒௫)

𝑒௫
 

We have the equality  

𝑒௫𝑓(𝑥) = cos(𝑒௫) − 𝑒ିଵ cos(𝑒௫ାଵ) − 𝑒௫ න
cos 𝑢

𝑢ଶ
𝑑𝑢

௘ೣశభ

௘ೣ

, 

And one more integration by parts shows that  

ቮ𝑒௫ න
cos 𝑢

𝑢ଶ
𝑑𝑢

௘ೣశభ

௘ೣ

ቮ <
3

𝑒௫
 

     In this case 𝑓(𝑥) decreases so rapidly that there is no difficulty at all proving the 
converges of the  integral. 

13.2.6 Example :  Suppose 𝑓 is a real, continuously differentiable function on [𝑎, 𝑏], 
𝑓(𝑎) = 𝑓(𝑏) = 0, and  

                                          ∫ 𝑓ଶ(𝑥)𝑑𝑥
௕

௔
= 1. 

Prove that 

                                      ∫ 𝑥𝑓(𝑥)
௕

௔
𝑓ᇱ(𝑥)𝑑𝑥 = −

ଵ

ଶ
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and that   

                                 ∫ [𝑓ᇱ(𝑥)]ଶ𝑑𝑥
௕

௔
. ∫ 𝑥ଶ𝑓ଶ(𝑥)𝑑𝑥 ≥

௕

௔

ଵ

ସ
. 

 Solution.   To prove the first assertion we merely integrate by parts. 

Taking 𝑢 = 𝑥, 𝑑𝑣 = 𝑓(𝑥)𝑓ᇱ(𝑥)𝑑𝑥, 

So that 𝑑𝑢 = 𝑑𝑥 and 𝑣 =
ଵ

ଶ
𝑓ଶ(𝑥). 

Since 𝑣 vanishes at both end points, the result is 

න 𝑥𝑓(𝑥)

௕

௔

𝑓ᇱ(𝑥)𝑑𝑥 = −
1

2
න 𝑓ଶ(𝑥)𝑑𝑥

௕

௔

= −
1

2
 

The second inequality is an immediate consequence of the Schwarz inequality applied 
to the two functions 𝑥𝑓(𝑥) and 𝑓ᇱ(𝑥). 
 
 

Model Examination Questions 

1. State and prove the fundamental theorem of calculus. 
2. Suppose 𝐹 and 𝐺 are differentiable functions on [𝑎, 𝑏], 𝐹ᇱ = 𝑓 ∈ 𝑅 and 𝐺ᇱ = 𝑔 ∈ 𝑅 

then show that 

∫ 𝐹(𝑥)𝑔(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏)𝑔(𝑏)𝐹(𝑎)𝐺(𝑎) − ∫ 𝑓(𝑥)𝐺(𝑥)𝑑𝑥

௕

௔
. 

 
13.3  SUMMARY:  

This lesson uncovers the fundamental connection between integration and 
differentiation, revealing their inverse relationship. Through the lens of the 
Fundamental Theorem of Calculus, learners will explore key theorems and examples 
that illuminate this critical concept. Key Takeaways of this lesson are Integration and 
differentiation as inverse operations, The Fundamental Theorem of Calculus, Proofs 
and applications of selected integration theorems, and Examples with solutions to 
reinforce understanding. 

13.4  TECHNICAL TERMS: 

 Real valued function 
 Uniformly Continuous 
 Partition 
 Upper Riemann Sum 
 Lower Riemann Sum   
 Constant function 
 Upper Limit 
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 Lower Limit 
 Converges absolutely 
 Monotonically Decreasing 
 Diverge 

13.5  SELF ASSESSMENT QUESTIONS: 

1. Let 𝑓  be a real valued function on [𝑎, 𝑏]  such that 𝑓 ∈ 𝑅[𝑎, 𝑏].  For 𝑎 ≤ 𝑥 ≤ 𝑏,  put 
𝐹(𝑥) = ∫ 𝑓(𝑡)

௫

௔
𝑑𝑡. Then 𝐹 is continuous on [𝑎, 𝑏]; furthermore, if 𝑓 is continuous at a 

point 𝑥଴ of [𝑎, 𝑏], then 𝐹 is differentiable at 𝑥଴ and 𝐹′(𝑥଴) = 𝑓(𝑥଴). 
2. State and prove the fundamental theorem of calculus. 
3. Suppose 𝐹  and 𝐺  are differentiable functions on [𝑎, 𝑏], 𝐹′ = 𝑓 ∈ 𝑅  and 𝐺 ′ = 𝑔 ∈ 𝑅 

then show that ∫ 𝐹(𝑥)𝑔(𝑥)
௕

௔
𝑑𝑥 = 𝐹(𝑏)𝑔(𝑏)𝐹(𝑎)𝐺(𝑎) − ∫ 𝑓(𝑥)𝐺(𝑥)𝑑𝑥

௕

௔
. 

4. Suppose 𝑓  is a real function on [0,1]  and 𝑓 ∈ 𝑅  on [𝑐, 1]  for every 𝑐 > 0 . Define 

∫ 𝑓(𝑥)
ଵ

଴
𝑑𝑥 = lim௖→଴ା ∫ 𝑓(𝑥)

ଵ

௖
𝑑𝑥 if this limit exists (and is finite) 

(a) If 𝑓 ∈ 𝑅 on [0,1] show that this definition of the integral agree. 
(b) Construct a function 𝑓 such that the above limit exists, although it fails to exist with 

|𝑓| in place of 𝑓. 

13.6  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International   
Editions Walter Rudin. 

 
2.  Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 1985. 

 
I. V. Venkateswara Rao 



Centre for Distance Education Acharya Nagarjuna University 

LESSON-14 
 

INTEGRATION OF VECTOR-VALUED 

FUNCTIONS AND RECTIFIABLE CURVES 
 
OBJECTIVES: 
 
The objective of the lesson is to help the learners to understand 
 
 To define and compute integrals of vector-valued functions. 
 To understand and apply properties of rectifiable curves. 

 

STRUCTURE: 
 

14.0     INTRODUCTION 
14.1  DEFINITION 
 

14.2  RECTIFIABLE CURVES 
14.3     SOME MORE EXAMPLES WITH SOLUTIONS 
14.4     SUMMARY 
14.5     TECHNICAL TERMS 
14.6     SELF ASSESSMENT QUESTIONS 
14.7     SUGGESTED READINGS 

 

14.0 INTRODUCTION: 

In the lesson, we define vector valued function on  into , and proved some 
properties of vector valued function. Also defined the rectifiable curve and derived 
the formulae for length of the rectifiable curve on  

We define the integral of a vector valued function as the integral of each component. 
This definition holds for both definite and indefinite integrals. 
 

14.1 : DEFINITION:  

Integration of vector valued functions let  be real 

valued functions on  and let . 

Be real valued functions  and let  be the              corresponding vector 
valued function of  into . Let  be monotonically increasing function on 

, we say that  on  if  on  for, . If this is 
the case, we define 
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14.1.1 Theorem: If  on , then 

(i)   

(ii)  on  for every constant  and  

 

and 

 

Proof: Suppose  and   are vector valued functions of  

 into  and  on . 

Then,  on  for  and  on  for . 

By theorem 13.1.2,  on  for  and 
 

 
 

Since  and 

 on  for , we have  on . 
 

 
 

Thus we have proved (i) 

Let  be any constant  

By Theorem 12.1.12,  on  and 

 

Since  we have  on  and 
 

 
 

Thus we have proved (ii) 

Similarly we prove the following Theorem by using Theorem 12.1.4, Theorem 12.1.6 
and Theorem 12.1.7. 
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14.1.2 Theorem: Let  be a vector-valued function on  and  

(i) If  on  and if , then on  and  on  and 

 
(ii) If  and  on  then  and 

 

(iii) If  on  and  is a positive constant, then  and 

 

Theorem 12.1.1 is also true for vector-valued functions. 
 

14.1.3 : Theorem : If  and  map  into , if  on  and , then 

 

Proof: Suppose  and map   into  and  and  then  

on  and  for  

By known theorem, 

 
Therefore, 

 
 

 
 

                                       

Therefore, 

 
Since  is a continuous function of  , by a known theorem, the square root function is 
continuous on  for every positive real number . 

Since , by Theorem 11.1.6 we have  on . 
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Now, we will show that 

 
Put 

 
and write  

Then we have, 

 
and 

 
 

By the Schwarz inequality, 

 
By Theorem 12.1.3 

 

If , then trivially 

 

If =0 then divide (1) by  on both sides. Then we have 
 

 
 

14.2 : RECTIFIABLE CURVES: 
 

14.2.1 Definition: A continuous mapping  of an interval  into  is called a 
curve in . In this case we sometimes say that  is a curve on . 

1. If  is one -to - one,  is called an arc. 

2. If ,  is said to be a closed curve. We associate to each partition 
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 of  and to each curve  on  the number. 

 
The  term in this sum is the distance (in ) between the points  and  
hence  is the length of a polygonal path with vertices at 

 in this order. This polygon approaches the range of   if 
. Hence the following definition is reasonable. 

 

14.2.2 : Definition: Let  be a curve on . We define the length of , defined by  , as 
 

We say that  is rectifiable, if  is finite. 

In the case of continuously differentiable curves, i.e. for curves  whose derivative  is 
continuous.  is given by a Riemann integral. 
 

14.2.3 : Theorem : If  is continuous on  then  is rectifiable and 

.  

Proof: Suppose  is continuously differentiable on , 

let  be any partition of . 

Consider, 

 

 

for . 

(By Theorem 12.1.18) This implies that 

 

 

 

So for any partition  of , 
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Consequently, 

 

Let . Write  

Since  is continuously differentiable on .  is continuous on . Since 
 is compact and  is continuous on ,  is uniformly continuous on 
.Then there exist  such that . 

Consider, 

 
 

 
 

 
 

 
 

 
 

 
Therefore, 

 

Since  is arbitrary, 

 
From (1) and (3), 

 
 

14.3 SOME MORE EXAMPLES WITH SOLUTIONS: 

14.3.1 Example: For  define  

Prove that  

(a)  
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and that 
 

(b)  

Where  denotes the greatest integer  

Prove that the integral in (b) converges for all  

Hint: To prove (a) compute the difference between the integral over  and the th 
partial sum of the series that defines  

Solution: (a) Ignoring the author’s advice, we note that 

 

 
 

 
 

 
 

 

(b) This result is trivial consequence of (a) and the identity  

 
14.3.2 Example: Suppose  increases monotonically on   is continuous, and 

 for   Prove that 
 

 
 

Hint: Take  real, without of generality. 
Given  , choose  so that  

Show that . 
Solution: The identity just given is a trivial consequence of Abel’s method of rearranging the 

sums: 

 

 
Now the fact that  is continuous and  is non-decreasing means that the right-hand 
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side can be made arbitrarily close to 

 
whenever the partition is sufficiently fine. 
It does not follow immediately that the function  is integrable on  
However, since  is non decreasing, its only discontinuities are jumps, and for any 

 there can be only a finite number of jumps larger than  
These can be enclosed in a finite number of open intervals of arbitrary small length. 
We can then argue, that any partition that is sufficiently fine will have upper and lower 
Riemann sums that differ by less than  

Hence  is integrable, and its integral is given by the stated relation. 

 
14.3.3 Example: Let ,  be curves in the complex plane defined on  by 

 , . 

Show that these curves have the same range, that  and  are rectifiable, that the 
length of  is  that the length of  is  and that  is not rectifiable. 

Solution: Since  has period  
It is obvious that  and  have the same range, namely the set of all complex numbers 
of absolute value  
To show that this is also the range of  
We need to show that the mapping  covers an interval 
of length  
i.e., that the mapping  covers an interval of length (We 
naturally take the value to be zero when  
Since this range is connected, it suffices to find two points  and  in the range with 
  
We choose those points to be  (the image of  

and the image of  

We have   

The rectification of  and  is straight forward: 

 

 
To show that  is not rectifiable, we observe that its length would be 
 

 
By making the substitution  in the last integral we get  
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But we already know that this integral diverges, since 
 
 

 
 

14.3.4 Example: Let  be a curve in  defined on  let  be a continuous one-one 
mapping of  onto  such that  and define  Prove 
that  is an arc, a closed curve, or a rectifiable curve if and only if the same is true of 

 Prove that  and  have the same length. 
Solution: We know that  has a continuous 1-1 inverse  

And that the composition of one-to-one functions is one-to-one. 
Hence, since  
We see that  and  are both arcs (one-to-one) if either is. 
Since necessarily  we see that  if and only if . 
Hence both are closed curves if either is. 
Finally, since  and  establish a one-to-one correspondence between partitions  of 

 and  of  such that .  

It follows that the two curves have the same length. 
 

14.3.5 Example: Evaluate 

 
Solution: Just take the integral of each component 

 

 
 

14.3.6 Note: We have introduce three different constants, one for each component. 

14.3.7 Example.  Suppose  is continuous on  and  then 

prove that   for all  

Solution.  Let  be a partition of  

Since  is continuous on  

Then  on  

Since  is continuous on  then  attains its maximum, so  for 
some  

Now for any partition   
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Since   

 

 

 

 

 for  

 for all . 
 

14.3.8 Example.  If  on  then  on . Show that the converse 
need not be true.  

 Solution.  Define  by  

 

 for all  

 is constant function on  

 is continuous on  

 on  and  

Since  on  

Therefore  on  but  on  
 

14.3.9 Example.  Suppose  is increasing on  on   is 
continuous at    and  if  then prove that 

 and  

Solution. Define  as  

Therefore we have  

But  

 

 is discontinuous at  

Therefore  has only one discontinuity in  
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Given that  is continuous at  

By Known theorem  on  

Let  be a partition of  

We have  

 

 for ant partition  of  

 

 

Therefore  
 

14.4  SUMMARY: 

This lesson introduces the concept of integrals of vector-valued functions, exploring 
their definition, computation, and properties. Learners will also delve into the concept 
of rectifiable curves, understanding their properties and applications. The components 
of this lesson is to Introduce integrals of vector-valued functions, Definition and 
computation of integrals, Theorems with proofs, Rectifiable curves: definition, 
properties, and applications, and Examples with solutions to illustrate key concepts. 

 

14.5  TECHNICAL TERMS: 

 Arcs 
 Closed curve 
 Compact 
 Complex plane 
 Constant function 
 Continuity 
 Derivative 
 Discontinuity 
 Functions 
 Integral of each component 
 Monotonically 
 Partition 
 Rectifiable curve 
 Series 
 Vector 

 
 



Centre for Distance Education 14.12 Acharya Nagarjuna University   

14.6  SELF ASSESSMENT QUESTIONS 

1. Define Integration of vector valued functions. 

2. Define arc. 

3. Define closed curve. 

4. If  on , then 

(i)   

(ii)  on  for every constant  and  

 

and 

 

5. If  is continuous on  then  is rectifiable and . 

 
14.7  SUGGESTED READINGS: 
 

1. Principles of Mathematical Analysis, Third Edition, Mc Graw-Hill International 
Editions Walter Rudin. 
 

2. Mathematical Analysis by Tom M. Apostol, Narosa Publishing House, 2nd Edition, 
1985. 

 
I. V. Venkateswara Rao 


